Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UCLA.

Reacting Molecules and Colloids Electrophoretically

Researchers in UCLA's Department of Chemistry and Biochemistry have harnessed gel electrophoresis in order to direct and program controlled collisional reactions between pulse-like bands of molecules and/or colloidal reagent species.

A Wearable Platform for In-Situ Analysis of Hormones

UCLA researchers in the Department of Electrical and Computer Engineering have developed a highly sensitive, wearable hormone monitoring platform.

Ultra-Low Cost, Transferrable and Thermally Stable Sensor Array Patterned on Conductive Substrate for Biofluid Analysis

UCLA researchers from the Department of Electrical Engineering have invented a novel biosensor array that is ultra-low cost and thermally stable. It prolongs the lifetime of electrode modules of sensor products and allows for extended sensing operation in uncontrolled environments.

Wearable Monitor of Attentional Integrity and Mental Strain

UCLA researchers in the Department of Psychiatry & Biobehavioral Sciences have developed a novel brain monitoring device that can be worn inconspicuously.

Scalable Manufacturing of Copper Nanocomposites with Tunable Properties

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a cost-effective method to produce copper-based nanocomposites with excellent mechanical, electrical and thermal properties.

Soft Shear Force Resistive Sensor Embedded Artificial Skin

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a bioinspired, thin and flexible liquid metal filled resistive PDMS microchannel shear force sensing skin.

Flexible Microfluidic Sensors for Curved Surfaces

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed flexible tactile sensors for curved surfaces that are robust against fatigue and suitable for robotic applications.

Titanium Implants with Novel Roughness

UCLA researchers in the School of Dentistry at the Weintraub Center for Reconstructive Biology have developed a novel titanium implant with hierarchical multi-scale roughness to promote bone growth.