Available Technologies

No technologies match these criteria. Please broaden your search criteria and try again.

Find technologies available for licensing from UC Davis.

Artery-on-a-Chip for Capturing Inflammatory Monocytes to Assess Cardiovascular Health

Researchers at the University of California, Davis have developed a microfluidic device that measures cardiovascular disease risk by quantifying the frequency of adherent monocytes in blood and assessing the activation level of circulating inflammatory cells.

An Optical System for Parallel Acquisition of Raman Spectra from a 2-Dimensional Laser Beam Array

Researchers at the University of California, Davis have developed a method for acquiring Raman spectra from a plurality of laser interrogation spots in a two-dimensional array. This method can be used for parallel analysis of individual cells or for fast chemical imaging of specimens.

Novel Auditory Diagnostic

Researchers at the University of California, Davis, have developed a novel diagnostic for the auditory system.

Molecular Photoswitches as MRI Contrast Agents Sensitive to Light/Bioluminescence

Researchers at the University of California, Davis have developed a light-activated gadolinium contrast agent.

Novel Hydrogel for Optimized Cell Delivery, Culture and Inflammation Prevention from De-cellularized Human Amniotic Membrane

A novel, human amnion derived hydrogel has been shown to considerably optimize cell delivery and scaffolding by increasing cellular survival, proliferation, and integration, as well as significantly decreasing host rejection and morbidity.

Microfabricated Silicon-Based Hollow Microneedles with Integrated Fluid Channels for Transdermal Fluid

Research conducted at the University of California, Davis has led to an improved method and apparatus for puncturing a surface for extraction, in situ monitoring, and substance delivery.

Genotype Screening of Livestock Animals to Predict Desirable Traits for Meat and Milk Production

Researchers at the University of California, Davis have developed a method for using single polynucleotide polymorphisms (SNPs) for screening livestock animals to predict which animals will have desirable carcass, feedlot traits as well as fatty acid composition in the milk and carcass. Identifying these traits will allow producers to selectively breed and manage animals based on desired characteristics, thereby maximizing productivity and profitability in commercial meat production operations.

Highly Efficient, Heterogeneous, Hybrid-Integrated Optoelectronic Device Structure with Conductive and Low Loss Interface

Researchers at the University of California Davis have developed a fabrication technique that allows conductive wafer bonding between heterogeneous semiconductor materials with low optical losses and low electrical losses (low voltage and resistance).