Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Davis.

Photo-Rechargeable Antibacterial/Antiviral Materials

Researchers at the University of California, Davis have developed a method to incorporate and enhance photo-induced biocidal functions on compounds, polymers, fibers, films, and textiles for daylight-driven rechargeable antibacterial and antivirus applications such as personal protective clothing, food packaging materials and medical devices.

dCas9 Epigenome Editing Toolkit

Researchers at the University of California, Davis have developed a dCas9 toolkit for human epigenome editing.

Fabrication Method for Side Viewing Miniature Optical Elements with Free-Form Surface Geometry

Researchers at the University of California, Davis have developed a fabrication method for free-form reflective side viewing miniature optical elements to focus and reflect light with minimal chromatic aberrations.

Single-Dose, Safe Method to Prevent Stool Eating (Coprophagia) in Dogs

Researchers at the University of California, Davis have developed a means, using an aversion conditioning technique, to deter dogs from eating feces- both their own and that of other animals.

Silicon Based Chirped Grating Emitter for Uniform Power Emission

Researchers at the University of California, Davis, have developed a chirped grating emitter with ultra-sharp instantaneous field of view (IFOV) for optical beam-steering applications.

Nondestructive System for Quantitative Evaluation of Cartilage Degradation and Regeneration

Researchers at the University of California, Davis, have developed a minimally invasive fluorescence based imaging system for the quantitative detection of cartilage health.

Half-Virtual-Half-Physical Microactuator

Researchers at the University of California, Davis have developed a half-virtual-half-physical microactuator that utilizes a combination of computational models and microelectromechanical systems for use in medical devices and mechanical systems.

Simple All-in-One UV Waveguide Microscope with Illumination Sectioning for Surface Morphology and Fluorescence Imaging

Researchers at the University of California, Davis have developed an all-in-one microscope combining ultraviolet excitation light with a waveguide directly integrated onto a light microscope stage, capable of providing surface morphology and fluorescence information with minimal sample preparation.