Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Berkeley.

Fem1b Inhibitors

UC Berkeley researchers have discovered novel, specific Fem1b inhibitors. Fem1b is essential in lymphoma and lung cancer cells.  Fem1b inhibition could be beneficial in cancer, metabolic disease, obesity, diabetes and other diseases. 

Technology for Eliminating the False Positive Discovery in Comparative Proteomic

The inventors have developed a technique to improve the accuracy of proteomic analyses by revealing the false positives that are surprisingly common with many methods of comparative proteomics and bio-orthogonal non canonical amino acid tagging (BONCAT). The inventors also describe newly developed methods for minimizing artifacts, including removal of naturally biotinylated proteome, data segmentation with a machine learning algorithm (termed Computer Vision), and employing an optimized digital graphene-based protein biosensor that has ELISA-accuracy.Conventional comparative proteomics and BONCAT are indispensable in various biomedical fields, including aging research, neuroscience, environmental and microbial research, immunology and virology, and cancer research.  

Hormonal Responsive White Adipose Tissue Micro-Physiological System

The inventors have developed a first-of-its-kind human stem cell-derived metabolically functioning white adipose tissue micro-physiological system (WAT-MPS). The system reconstructs actual physiological circulation and provides a supportive microenvironment that promotes differentiation and maintains long-term cell viability that is superior to traditional tissue culture conditions. Previous studies of stem cell-derived human adipocytes often result in insulin resistant cells due to suboptimal differentiation conditions. The inventors systematically screened key differentiation factors and identified a window of conditions that can create insulin sensitive human adipocytes from mesenchymal and induced pluripotent stem cells without decreasing adipogenesis. To facilitate the rapid and scalable assessment of these human adipocytes, the inventors also optimized an MPS platform that can be used to quantitate insulin responsiveness of adipocytes. This WAT-MPS platform will enable high throughput drug screening for insulin sensitizers, regulators of lipolyisis, and environmental insulin desensitizers, and power personalized medicine approaches to investigate genetic risks of insulin resistance and pharmaco-genetics.   

Modified Bauxite for Phosphate Recovery and Recycling

This technology shows three different forms of bauxite to be effective adsorbents for phosphate ions. 1. Mildly processed bauxite (MPB), which is essentially ball-milled raw bauxite ore, 2. Thermally activated bauxite (TAB), which is ball-milled bauxite ore subjected to 300 C roasting, and 3. Acid treated thermally activated bauxite (ATAB), which is ball-milled bauxite ore subjected to 300 C roasting and subsequent acid treatment using 5M HCl.  These three different forms of bauxite are shown to adsorb phosphate in high amounts from solutions containing a range of initial phosphate concentrations, 5 ppm to 631 ppm.  ATAB shows the highest adsorption density, demonstrating a value of 50 mg of PO4-/g ATAB at pH=6TAB shows an adsorption density of 25 mg PO4-/g TAB at pH=6  There are two industry standard materials for phosphate adsorption, activated magnesia (MgO), and activated alumina (Al2O3). For comparison, activated magnesia (MgO) demonstrates an adsorption capacity of 25 mg PO4-/g at pH=6. Activated alumina (Al2O3) shows an adsorption capacity of 11 mg PO4-/g at pH=6 (reference: Journal of Environmental Chemical Engineering 5 C(2017) 3181–31893183).  Phosphate, a finite and dwindling resource mined from phosphate rock, is a critical nutrient in modern agriculture, which is applied as fertilizer to ensure adequate plant growth. The inventors provide a cost-effective, environmentally-friendly method for recovering phosphate from agricultural runoff and other wastewater and delivering the recovered phosphate in a targeted and controlled manner to agriculture and farm sectors.

Kaposi Sarcoma Associated Herpesvirus Gene Function and Methods for Developing Antivirals, Anti-KSHV Vaccines, and KSHV Based Vectors

The inventors present a novel strategy for achieving pathogen opportunistic pathogenesis, with broad implications for treating infectious diseases. In a comprehensive analysis of Kaposi sarcoma associated herpesvirus (KSHV), a medically important virus, the inventors discovered novel antiviral targets and gene function, and identified opportunistic factors with dual functions of regulating both the immune environment/responses and viral reactivation/replication. This discovery includes:A collection of KSHV mutants with inactivation or deletion of each of the 91 predicted open reading frames (91 mutant strains). Methods and reagents (e.g. primers) for construction of the collection of KSHV mutants. The identity of 44 KSHV essential genes, which represent potential antiviral targets (including 27 newly identified essential genes). Methods for construction of gene-inactivation and rescued mutants, and for tagging and introducing foreign genes into the KSHV genome. These approaches can be used for vector and vaccine development. Growth properties of viral mutants with inactivation of non-essential genes.Methods for screening mutants in different human cell lines.Opportunistic factors of KSHV and all other animal viruses that have dual functions as both the modulators of immune environment/response and regulators of viral reactivation/replication.   

Workflow to Computationally Optimize Upcycling of Critical Metals from Spent Lit

This technology computationally optimizes the upcycling of critical metals in deep eutectic solvents with molecular dynamics, artificial intelligence, and experimental approaches.

Light-Driven Ultrafast Electric Gating

The inventors have discovered a new way to generate ultrafast back-gating, by leveraging the surface band bending inherent to many semiconductor materials. This new architecture consists of a standard bulk semiconductor material and a layered material on the surface. Optical pulses generate picosecond time-varying electric fields on the surface material. The inventors have successfully applied this method to a quantum well Rashba system, as this is considered today one of the most promising candidates for spin-based devices, such as the Datta Das spin-transistor. The technology can induce an ultrafast gate and drive time-dependent Rashba and quantum well dynamics never observed before, with switching faster than 10GHz. This approach minimizes lithography and will enable light-driven electronic and spintronics devices such as transistors, spin-transistors, and photo-controlled Rashba circuitry. This method can be applied with minimal effort to any two-dimensional material, for both exfoliated and molecular beam epitaxy grown samples. Electric field gating is one of the most fundamental tuning knobs for all modern solid-state technology, and is the foundation for many solid-state devices such as transistors. Current methods for in-situ back-gated devices are difficult to fabricate, introduce unwanted contaminants, and are unsuited for picosecond time-resolved electric field studies.  

Digital Microfluidic Plasmonic Polymerase Chain Reaction (PCR) Device

This technology automates the polymerase chain reaction (PCR) process using digital microfluidics for droplet manipulation. The invention also increases PCR speed and efficiency by combining electrowetting and plasmonic heating in a single device.PCR tests have a wide variety of applications, including the diagnosis of infectious organisms such as viruses and bacterias, as well as cloning, mutagenesis, sequencing, gene expression, and more. The test has become a gold standard for detecting SARS-CoV-2, the virus that causes COVID-19. In the PCR process, a gene or part of the DNA of the infecting organism is amplified exponentially to the extent that it can be detected using conventional methods like gel electrophoresis. This invention addresses the following challenges in current PCR methods: a long sample to answer time; and manual manipulation by humans, which increases the error rate in the tests.