Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Berkeley.

Nanocone Metasurface For Omni-Directional Detector And Photovoltaics

Reducing reflection from surfaces is very important for improving the efficiency of solar cells and photodetectors, producing improved optical displays with less glare as well as coatings for high power optical applications. Without anti-reflection (AR), semiconductor surfaces reflect 30-40% of incident light and glass reflects 10-20% even at normal incidence and >70% with large incident angles.  Traditional methods for achieving anti-reflection are through thin film AR coating. The traditional AR coating is designed to be a quarter-wavelength in thickness (typically 50-100 nm) and has refractive index equal to the geometric mean of the two refractive indices of the media between which antireflection is desired. Antireflection is achieved using destructive interference and is necessarily a narrow-band and narrow-angle effect. The anti-reflective performance deteriorates as incidence angle increases and is particularly severe beyond 40-50 degrees. This is a major issue in the presence of diffuse light, which is the case in any realistic environment.  Researchers at the University of California, Berkeley have developed a novel  Nanocone Metasurface that is able to address what AR coating is unable to do at high incident angles. This method significantly augments the properties of a traditional thin film AR coating. A nanocone array is made of silicon nitride sitting on a thin silicon nitride layer. This underlying layer is similar to a traditional thin film AR coating. Underneath the nanocone metasurface is a indium gallium phosphide absorber. The nanocone metasurface serves as an omni-directional anti-reflection coating thereby collecting light from all directions.

Combined Greywater-Storm Water System With Forecast Integration

Water is a scarce resource in some part of the United States, and recent droughts in the Midwest and the South have elevated the issue of water scarcity to a national level. Existing water sources will face increasing strain due to population growth and climate change, and financial and regulatory barriers will prevent the development of new sources. One method to alleviate water scarcity is storm water capture. Storm water can be used for non-potable applications such as irrigation, laundry, and toilet flushing to significantly reduce domestic municipal water consumption. However, in arid regions of the US, rain comes in short, intense storms only a few months out of the year, and the duration and intensity of these storms require large storage tank volumes for storm water capture to be financially feasible.    One solution is to integrate storm water capture with greywater capture. Greywater is a reliable source of water for domestic reuse, and includes water from washbasins, laundry, and showers (kitchen sinks and water for toilet flushing are considered blackwater). Combining greywater-storm water in the same collection system allows for a much smaller storage tank. A UC Berkeley researcher, along with other researchers, have developed aforecast-integrated automated control system for combined greywater-storm water storage and reuse. A simple and reliable approach for managing greywater and storm water collection at a household or community level is provided, allowing for the near-continuous monitoring and adjustment of water quantity and quality in a combined greywater-storm water storage tank based on monitored feedback/output from individual, tank-specific sensors and/or sensors located elsewhere in the water collection system.   

Protein-Coated Microparticles For Protein Standardization In Single-Cell Assays

Single-cell analysis offers powerful capabilities of identification of rare sub-populations of cells, understanding heterogeneity of cancerous tumors, and tracking cell differentiation and reprogramming. Despite great potentials for uncovering new biological systems and targeting diseases with precision medicine, single-cell approaches are composed of complex device processes that can cause bias in measurement.  In deep sequencing, technical variation in single cell expression data occurs during capture and pre-amplification steps. Similarly, in single-cell protein assays, technical variability can obscure functionally relevant variance.    To better control protein measurement quality in single-cell assays, researchers at the University of California, Berkeley developed a novel method to loading and release protein standard. This method utilizes the surface of modified and functionalized microparticles as vehicles to capture target proteins with desired concentrations. Chelation-assisted click chemistry is applied to demonstrate that protein standards with different molecular masses can be loaded and bounded in a single-cell protein assay. Microparticles are introduced into single-cell devices by either passive gravity, magnetic attraction, or other physicochemical forces. These protein standards from microparticles provide a reference to measure protein mass sizes from individual cells and a quality control for any biases in device fabrication, cell lysis, protein solubility, protein capture, and protein readouts (i.e. antibody probing).   

Stroboscopic Universal Structure-Energy Flow Correlation Scattering Microscopy

Flexible semiconductors are far less costly, resource and energy intensive than conventional silicon production. Yet, as an unintended consequence of semiconductor printing, the films produced contain structural heterogeneities, or defects, which can limit their capacity to shuttle energy, or, information, over device-relevant scales. To be able to fully embrace this new, greener process, it is essential to elucidate which physical material properties most influence energy flow and which defects are most deleterious to efficient energy transport so that they can be targeted for elimination at the materials processing stage. Although some rather complex approaches have recently been used to track energy flow, the applicability of each one depends on specifics of the semiconductor properties (bandgap, excitonic vs charge carrier form of excitation, strong absorption or emission). Existing techniques cannot therefore be applied to a broad range of materials, and often necessitate adapting samples to fit the specific requirements of the technique. A broadly applicable approach is therefore needed to non-invasively and simultaneously reveal and correlate material morphology and energy flow patterns across many scales.    Researchers at the University of California, Berkeley have developed a new high-sensitivity, non-invasive, label-free, time-resolved optical scattering microscope able to map the flow of energy in any semiconductor, and correlate it in situ to the semiconductor morphology. This device has been shown as a far simpler approach to spatio-temporally characterize the flow of energy in either charge or exciton form, irrespective of the electronic properties of the material, and with few-nm precision. Furthermore, built into this approach is the unprecedented capability to perform in situ correlation to the underlying physical structure of the material. 

Linear/Angular Position Stabilization & Control Of An Underwater Robotic System

There are several emerging applications for Autonomous Underwater Vehicles (AUVs) where the agility and accurate control of location and/or orientation is critical. In the presence of random ocean currents and waves, conventional AUV systems need to use a combination of their thrusters to generate an appropriate force/torque and cancel the external disturbance to maintain the desired attitude or position. This is a relatively slow response since it requires accelerating and pushing water around the vehicle body. Thus, existing AUVs have disadvantages: (i) accurate and agile orientation and position control/stabilization is challenging; (ii) since thrusters are operational during reorientation maneuvers, a substantial amount of power is consumed to pump the bulk fluid, wasting the precious power storage of the vehicle and thus reducing its operational time; and (iii) drag forces and torques exerted on the thrusters significantly affect the efficiency of reorientation maneuvers.   UC Berkeley researchers have designed a new device for fast stabilization and control of an underwater robotic vehicle. In this architecture, the attitude maneuvers are performed using reaction torques that the body of the vehicle gains from a central inertial system.   

Tissue Projection Electrophoretic Separation Of Protein

A range of related immunoblotting methods have enabled the identification and semi-quantitative characterization of e.g., DNA (Southern blot), RNA (northern blot), proteins (Western blot), and protein-protein interactions (far-western blot); by coupling biomolecule separations and assays.  However, there are a wide number of alternative splicing events, post-translational modifications, and co-translational modifications (e.g., phosphorylation, glycosylation, and protein cleavage) that give rise to proteoforms and protein complexes with distinct function and subsequent cell behavior that cannot be analyzed with conventional methods such as immunohistochemistry (IHC). Analytical variability (lack of isoform- or complex-specific antibody probes), biological variability (small cell subpopulations diluted in bulk analysis), and lack of multiplexing (measurement of multiple proteins from the same tissues) can all render proteoforms and protein complexes undetectable by current technologies.     UC Berkeley researchers have created electrophoretic separation platform that is capable of measuring proteoforms and protein complexes lacking specific antibodies alongside spatial information, at the cellular level.  This platform maintains the architecture of 2D tissue slices while projecting a protein separation in the 3rd dimension. The platform mitigates artifacts induced by tissue dissociation processes, as the intact tissue is lysed and subject to a protein separation. The platform is also compatible with differential detergent fractionation methods for further separation of proteins (e.g. separation by localization within the cell, by cell type, by protein complex formation, or by cellular vs. matrix proteins), opening the door for a novel, refined classification taxonomy using enhanced biomarker signatures for diagnostics and treatment selection in oncology among a wide range of additional future applications.  

Smart Woodworking Tool For Joinery

Digital fabrication with wood currently centers around using Computer Numerical Control (CNC) routers to cut shapes out of planar materials, such as plywood. While this technique is capable of producing highly complex geometries, it does not appropriately address the geometries required by many woodworking tasks.  Also, lumber (which can have slim aspect ratios resembling 1-D stock material) can be difficult to work with using CNC tools, which are optimized for planar stock material   UC Berkeley researchers have developed a digital fabrication system for woodworking ("MatchSticks"). MatchSticks is a digital fabrication system tailored for joinery by combining a portable CNC machine, a touchscreen user interface, a parametric joint library and software.  MatchSticks enables makers of varying skill to rapidly explore and create artifacts from wood.  

Magnetic Sensor Using Acoustically Driven Ferromagnetic Resonance

Ferromagnetic resonance (FMR) measures magnetic properties of materials by detecting the precessional motion in of the magnetization in a ferromagnetic sample. Different types of FMR include externally-driven FMR and current-driven FMR. FMR can be excited using a variety of techniques, like cavity excitation, stripline excitation, spin transfer torque, and spin orbit torque, among others These applications are typically not compatible with device applications. They require large cavities, high power drive and use large sample volume in order to be effective. However, FMR has some attractive characteristics. These includes the ability to modulate material permeability and electromagnetic absorption as a function of magnetic applied field. UC investigators have developed a surface acoustic wave (SAW) delay line on a piezoelectric lithium niobate substrate. The delay line consists of a pair of interdigitated transducers (IDTs) – one used to generate a SAW, and the other used to detect the SAW once it has travelled across the gap between the two IDTs. A magnetostrictive ferromagnetic material (in our case nickel) is deposited between these two IDTs, and the strain generated by the SAW is transferred into the film. This generates a time-varying internal magnetic field within the magnetostrictive film. The delay line is operated in the GHz range. By appropriately biasing the magnetic film with an external magnetic field, the magnet can be driven into FMR. In this regime, the magnet beings to strongly absorb the travelling SAW. Thus, by measuring the absorption of the SAW (by comparing the input power incident on the generating IDT to the power measured on the detection IDT), it can be determined whether the magnet has entered FMR. This interaction also substantially alters the phase of the travelling wave – and measurements of this phase difference can also be used to detect FMR. This effect can be used as an extremely sensitive magnetic field sensor by biasing the magnetic film so that it is very close to entering FMR and then measuring the absorption or phase of the SAW as a function of applied magnetic field. In this regime, very small changes in the external magnetic field can cause substantial and easily measurable changes in the output power and output phase measured on the detection IDT. By using industry-standard generation and detection techniques and an input power of 20 mW, these devices should be able to measure magnetic fields on the order of ~100 femtoTesla at room temperature, beating comparable state of the art devices by several orders of magnitude when considering relevant SWaP metrics.