Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Energy > Other

Categories

[Search within category]

Optimizing Bipolar Membrane Interfaces to Catalyze Water Dissociation

Researchers at UCI have modified current commercial membranes to enhance efficiency of water dissociation at varying conditions for electrochemical technologies geared towards renewable fuel generation.

Electric Ratchet Based Ion Pumps

UCI researchers developed a new device that uses electricity to drive ion separation across a membrane. This device can increase the energy efficiency of various applications such as artificial photosynthesis, water desalination, and chemical separations.

Method For Liquid-To-Solid Phase Separation Of Uranium And Uranyl Contaminant From Various Solutions

Researchers at UCI have developed a separation method for removing radioactive contaminants, specifically uranium contaminants, from liquid solutions.

Charged Membranes Incorporated With Porous Polymer Frameworks

Ion-exchange membranes have been established for a variety of industrial applications, including energy and environmental technologies related to water treatment, fuel cells, and flow batteries. However, the limited tunability and adverse ion permeability-selectivity tradeoff exhibited by traditional ion-exchange membranes limit their development. To address this limitation, researchers at UC Berkeley developed a new class of composite ion-exchange membrane materials incorporated with highly tunable porous aromatic frameworks (PAFs). The Berkeley researchers show that an assortment of PAF variants can be easily embedded into charged membranes, where the choice of PAF filler can be used to optimize the physical, ion transport, and adsorptive properties of the membrane according to their targeted application. Material characterizations indicate that numerous charged membranes embedded with PAFs exhibit excellent dispersibility, interfacial compatibility, structural flexibility, and pH stability. Proton conductivity and water uptake measurements also indicate that the exceptionally high porosity of PAFs enhances ion diffusion in membranes, while abundant, favorable PAF-polymer interactions decrease non-selective swelling pathways typically observed in highly charged ion-exchange membranes. Furthermore, adsorption experiments demonstrate that ion-selective PAFs can be embedded into charged membranes to tune the ion selectivity of the membrane and also enable their use as membrane adsorbents. Test show promise for technology to improve the general performance and tunability of ion-exchange membrane technologies.

Non Intrusive Workflow Assessment (NIWA) for Manufacturing Optimization

The invention is a smart non-intrusive workflow assessment platform for monitoring and optimizing manufacturing environments. The platform monitors environmental and energy metrics, and provides learning models to classify workers’ activities and relate them to the equipment utilization and performance. Correlating both stream of data enables both workers and supervisors to improve the efficiency of the whole manufacturing process and at an affordable price.

Multifunctional Separations Using Adsorbent-Based Membranes

The selective separation of trace components of interest from various mixtures (e.g., micropollutants from groundwater, lithium or uranium from seawater, carbon dioxide from air) presents an especially pressing technological challenge. Established materials and separation processes seldom meet the performance standards needed to efficiently isolate these trace species for proper disposal or re-use. To address this issue, researchers at UC Berkeley developed a novel separation strategy in which highly selective and tunable adsorbents or adsorption sites are embedded into membranes. In this approach, the minor target species are selectively captured by the embedded adsorbents or adsorption sites while the species transport through the membrane. Simultaneously, the mixture can be purified through traditional membrane separation mechanisms. As a proof-of-concept, the researchers incorporated Hg2+-selective adsorbents into electrodialysis membranes that can simultaneously capture Hg2+ via an adsorption mechanism while desalinating water through an electrodialysis mechanism. Adsorption studies demonstrated that the embedded adsorbents maintain rapid, selective, regenerable, and high-capacity Hg2+ binding capabilities within the membrane matrix. Furthermore, when inserted into an electrodialysis setup, the composite membranes successfully capture all Hg2+ from various Hg2+-spiked water sources while permeating all other competing cations to simultaneously enable desalination. Finally, using an array of other ion-selective adsorbents, the Berkeley team showed that this strategy can in principle be applied generally to any target ion present in any water source. This multifunctional separation strategy can be applied to existing membrane processes to efficiently capture targeted species of interest, without the need for additional expensive equipment or processes such as fixed-bed adsorption columns.

Inexpensive Wobbe Index Sensor to Measure Gaseous Fuel Quality

UCR researchers have developed an inexpensive sensor to measure the energy content and fuel quality of gaseous combustible fuel. This sensor estimates the Wobbe Index in real time time and costs about $10. The sensor is confirmed to operate between -20°and 70°Celsius under pressures of -3600 Psi, with an accuracy of ±1%.  Fig. 1 shows the predicted Wobbe Index vs Actual Wobble Index, showing the accuracy of the sensor

Technologies Related to Variable-Load Voltage Converters and Their Control Schemes

Researchers at the University of California, Davis have developed voltage converters systems – with associated control schemes – that span a broad spectrum of potential applications.

Higher-Speed and More Energy-Efficient Signal Processing Platform for Neural Networks

Researchers at the University of California, Davis have developed a nanophotonic-based platform for signal processing and optical computing in algorithm-based neural networks that is faster and more energy-efficient than current technologies.

Multi-Point, Multi-Access Energy Storage

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel multi-point, multi-access thermal energy storage system.

Course Description: Bending The Curve: Climate Change Solutions

“There is no single technology that will solve climate change. If we want to prepare our students to fight global warming, they need to understand the scientific and the human dimensions of the problem, and we need to give them the tools to address the problem.”     - Professor V. Ramanathan

Thermodynamic Integration Simulation Method for Filling Molecular Enclosures Using Spliced Soft-Core Interaction Potential

Researchers have developed a simulation method to determine the properties of molecular enclosures based on slow growth thermodynamic integration (SGTI).

Selective Deposition Of Diamond In Thermal Vias

UCLA researchers in the Department of Materials Science & Engineering have developed a new method of diamond deposition in integrated circuit vias for thermal dissipation.

Ceramic And Metallic Cellular Structures Wtih Interconnected Microchannels

UCLA researchers in the Department of Mechanical Engineering have developed cellular porous metallic and ceramic structures that can be used to increase the production and recovery of tritium for fusion power reactors or as a support for electrode materials.

Nanocellulose-Assisted Exfoliation of Graphite to Few Layer Graphene

Researchers at the University of California, Davis have developed a high-yield method that utilizes the unique properties of cellulose nanofibrils (CNFs) to fabricate high-quality graphene from bulk graphite. This graphene can then be fabricated into graphene nanopapers, which have unique moisture and heat-sensing capabilities for applications in “smart” electronic devices and other uses.

Decentralized Charging Protocol for Plug-in Electric Vehicles

Plug-in vehicles (PEVs) have drawn interest from government, automakers, and the public due to potential for reduced environmental impact. UCI researchers have developed a decentralized charging protocol for PEVs that results in improved stability in power grid demand.

ABSTRACT: Variable Gaseous Fuels Engine

Brief description not available

Facile, Low-Energy Routes for the Production of Hydrated Calcium and Magnesium Salts from Alkaline Industrial Wastes

UCLA researchers in the Department of Civil and Environment Engineering have developed a method for production of hydrated calcium and magnesium salts from alkaline industrial wastes using a facile and low-energy process.

Development of Flexible and Stretchable Thermoelectric Personal Wearable Devices

Currently available wearable thermoelectric devices have the drawback of requiring a rigid heat sink (e.g., metal pin fin structures, or a fan), or the device performance is usually very low in the absence of such a heat sink.

Synthesis of Nanocrystalline Iron Nitrides Using Two-Step Reactive Milling Process

Nanocrystalline iron nitride is an important soft magnetic material; however, conventional methods of production don’t exist. Synthesis of dense nanocrystalline iron nitrides is not possible by simply annealing elemental iron in NH3 at temperatures in excess of 600° C since g’-Fe4N and other iron nitrides are unstable above 600°C and will decompose. Sandia researchers have discovered that by using a two-step reactive milling process and high pressure spark plasma sintering (SPS) they can quickly and efficiently fabricate bulk g’-Fe4N parts.

Selective Nitrogen Adsorption Using a Vanadium Metal-Organic Framework

Natural gas, composed primarily of methane, has many potential uses as a cleaner and more renewable source of energy than other fossil fuels. However, about 20% of US natural gas reserves contain levels of N2 that are too high for pipeline processing. Using natural gas from renewable sources also encounters this problem. Furthermore, in processing steps to create high-purity methane from its various sources, the removal of N2 remains a significant energetic cost. This separation is typically performed through cryogenic distillation, and improvements in energy efficiency of this separation are necessary to utilize the many available sources of methane. Switching to membrane or adsorbent-based technologies could potentially alleviate this challenge. Size selective molecular sieves and membranes have demonstrated some ability for separating N2 from CH4, but face problems with scalability and selectivity; and current adsorbents need significant improvements in selectivity and capacity for N2 to be commercially viable.  To address this situation, researchers at UC Berkeley have developed a new adsorbent V2Cl2(btdd) with exceptional affinity for nitrogen, such that early experiments already demonstrate a N2/CH4 selectivity of over 10x greater than any reported material. The Berkeley material is a permanently porous vanadium(II)-containing metal-organic framework (MOF). It represents the first example of a MOF with five-coordinate vanadium(II) centers as the primary metal node. The electronic properties of these five-coordinate V(II) centers make this MOF uniquely reactive towards relatively inert and weak electron acceptors, such as nitrogen, creating a stronger M–N2 interaction than any known MOF. Additionally, the high-density of V(II) centers translates to a high gas uptake capacity, qualifying this material as a promising N2/CH4 selective adsorbant. Key performance parameters can be tuned as the building blocks are synthetically modifiable.

Accelerating palladium nanowire hydrogen sensors using engineered nanofiltration layers

Researchers at UCI have developed a method for enhancing existing hydrogen gas sensors, leading to as much as a 20-fold improvement in sensor response and recovery times.

  • Go to Page: