Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Energy > Other


[Search within category]

Light-Driven Ultrafast Electric Gating

The inventors have discovered a new way to generate ultrafast back-gating, by leveraging the surface band bending inherent to many semiconductor materials. This new architecture consists of a standard bulk semiconductor material and a layered material on the surface. Optical pulses generate picosecond time-varying electric fields on the surface material. The inventors have successfully applied this method to a quantum well Rashba system, as this is considered today one of the most promising candidates for spin-based devices, such as the Datta Das spin-transistor. The technology can induce an ultrafast gate and drive time-dependent Rashba and quantum well dynamics never observed before, with switching faster than 10GHz. This approach minimizes lithography and will enable light-driven electronic and spintronics devices such as transistors, spin-transistors, and photo-controlled Rashba circuitry. This method can be applied with minimal effort to any two-dimensional material, for both exfoliated and molecular beam epitaxy grown samples. Electric field gating is one of the most fundamental tuning knobs for all modern solid-state technology, and is the foundation for many solid-state devices such as transistors. Current methods for in-situ back-gated devices are difficult to fabricate, introduce unwanted contaminants, and are unsuited for picosecond time-resolved electric field studies.  

Cascaded Resonant Switched-Capacitor For Power Converter Architecture

Data center power demands are growing fast. To address this situation, next-generation data centers are moving to 48 V bus architectures to reduce distribution loss on the bus bar of server racks. One important research topic regarding this architecture is stepping down from 48 V to the point-of-load voltage, which is usually implemented by an intermediate bus converter followed by a voltage regulator, with the benefits of high efficiency and reutilization of 12 V legacy systems.Many topologies have been explored for the 48-to-12 V intermediate bus applications, such as inductor-based converters. However, since capacitors have higher energy densities compared with inductors, switched-capacitor based converters have the potential to achieve higher power density and have gained increasing attention in performance-driven applications. Integrating resonant conductors into cascaded switch-capacitor converters further improves performance.To address this potential, researchers at UC Berkeley developed a novel resonant switched-capacitor based converter. The Berkeley converter uses a simple structure and operation principle, and has the potential to achieve dramatic efficiency and power density improvement over existing leading alternatives.

High-Efficiency Heat Exchanger Operating at Elevated Temperatures and Pressures

Researchers at the University of California, Davis have developed a heat exchanger produced by additive manufacturing that operates with high efficiency under high pressure and temperature conditions.

Microchannel Polymer Heat Exchanger

Researchers at the University of California, Davis have developed a highly efficient microchannel polymer heat exchanger in a compact and lightweight design.

Nanocellulose-based Aerogel Fibers as Insulation

Researchers at the University of California, Davis have produced continuous, sheath-core, coaxial fibers with highly porous, nanocellulose, aerogel cores for use as high-performance insulators.

Optimizing Bipolar Membrane Interfaces to Catalyze Water Dissociation

Researchers at UCI have modified current commercial membranes to enhance efficiency of water dissociation at varying conditions for electrochemical technologies geared towards renewable fuel generation.

Electric Ratchet Based Ion Pumps

UCI researchers developed a new device that uses electricity to drive ion separation across a membrane. This device can increase the energy efficiency of various applications such as artificial photosynthesis, water desalination, and chemical separations.

Method For Liquid-To-Solid Phase Separation Of Uranium And Uranyl Contaminant From Various Solutions

Researchers at UCI have developed a separation method for removing radioactive contaminants, specifically uranium contaminants, from liquid solutions.

Multi-Phase Hybrid Power Converter Architecture With Large Conversion Ratios

The power demands on data centers are large and increasing rapidly. This is straining data center economic and environment impacts, and in turn driving improvements in data center power efficiencies. Data centers have been widely adopting 48 V intermediate bus architectures due to higher efficiency, good flexibility, and reduced cost. However, a major challenge in such systems is the conversion from the 48 V bus to the extreme low voltage and high current operating levels of server CPUs and GPUs.To address this challenge, UC Berkeley researchers developed a multi-phase hybrid power converter architecture. The Berkeley design uses hybrid converter topologies. A switched-capacitor network is smartly merged with a switched-inductor network, resulting in circuit component number reduction and soft-charging operation of the capacitors. Furthermore, the Berkeley architecture integrates a multi-phase control technique to achieve a higher conversion ratio of the switched-capacitor network, which can further improve the overall system efficiency without increasing the circuit size.  

Charged Membranes Incorporated With Porous Polymer Frameworks

Ion-exchange membranes have been established for a variety of industrial applications, including energy and environmental technologies related to water treatment, fuel cells, and flow batteries. However, the limited tunability and adverse ion permeability-selectivity tradeoff exhibited by traditional ion-exchange membranes limit their development. To address this limitation, researchers at UC Berkeley developed a new class of composite ion-exchange membrane materials incorporated with highly tunable porous aromatic frameworks (PAFs). The Berkeley researchers show that an assortment of PAF variants can be easily embedded into charged membranes, where the choice of PAF filler can be used to optimize the physical, ion transport, and adsorptive properties of the membrane according to their targeted application. Material characterizations indicate that numerous charged membranes embedded with PAFs exhibit excellent dispersibility, interfacial compatibility, structural flexibility, and pH stability. Proton conductivity and water uptake measurements also indicate that the exceptionally high porosity of PAFs enhances ion diffusion in membranes, while abundant, favorable PAF-polymer interactions decrease non-selective swelling pathways typically observed in highly charged ion-exchange membranes. Furthermore, adsorption experiments demonstrate that ion-selective PAFs can be embedded into charged membranes to tune the ion selectivity of the membrane and also enable their use as membrane adsorbents. Test show promise for technology to improve the general performance and tunability of ion-exchange membrane technologies.

Non Intrusive Workflow Assessment (NIWA) for Manufacturing Optimization

The invention is a smart non-intrusive workflow assessment platform for monitoring and optimizing manufacturing environments. The platform monitors environmental and energy metrics, and provides learning models to classify workers’ activities and relate them to the equipment utilization and performance. Correlating both stream of data enables both workers and supervisors to improve the efficiency of the whole manufacturing process and at an affordable price.

Multifunctional Separations Using Adsorbent-Based Membranes

The selective separation of trace components of interest from various mixtures (e.g., micropollutants from groundwater, lithium or uranium from seawater, carbon dioxide from air) presents an especially pressing technological challenge. Established materials and separation processes seldom meet the performance standards needed to efficiently isolate these trace species for proper disposal or re-use. To address this issue, researchers at UC Berkeley developed a novel separation strategy in which highly selective and tunable adsorbents or adsorption sites are embedded into membranes. In this approach, the minor target species are selectively captured by the embedded adsorbents or adsorption sites while the species transport through the membrane. Simultaneously, the mixture can be purified through traditional membrane separation mechanisms. As a proof-of-concept, the researchers incorporated Hg2+-selective adsorbents into electrodialysis membranes that can simultaneously capture Hg2+ via an adsorption mechanism while desalinating water through an electrodialysis mechanism. Adsorption studies demonstrated that the embedded adsorbents maintain rapid, selective, regenerable, and high-capacity Hg2+ binding capabilities within the membrane matrix. Furthermore, when inserted into an electrodialysis setup, the composite membranes successfully capture all Hg2+ from various Hg2+-spiked water sources while permeating all other competing cations to simultaneously enable desalination. Finally, using an array of other ion-selective adsorbents, the Berkeley team showed that this strategy can in principle be applied generally to any target ion present in any water source. This multifunctional separation strategy can be applied to existing membrane processes to efficiently capture targeted species of interest, without the need for additional expensive equipment or processes such as fixed-bed adsorption columns.

Inexpensive Wobbe Index Sensor to Measure Gaseous Fuel Quality

UCR researchers have developed an inexpensive sensor to measure the energy content and fuel quality of gaseous combustible fuel. This sensor estimates the Wobbe Index in real time time and costs about $10. The sensor is confirmed to operate between -20°and 70°Celsius under pressures of -3600 Psi, with an accuracy of ±1%.  Fig. 1 shows the predicted Wobbe Index vs Actual Wobble Index, showing the accuracy of the sensor

Technologies Related to Variable-Load Voltage Converters and Their Control Schemes

Researchers at the University of California, Davis have developed voltage converters systems – with associated control schemes – that span a broad spectrum of potential applications.

Higher-Speed and More Energy-Efficient Signal Processing Platform for Neural Networks

Researchers at the University of California, Davis have developed a nanophotonic-based platform for signal processing and optical computing in algorithm-based neural networks that is faster and more energy-efficient than current technologies.

Multi-Point, Multi-Access Energy Storage

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel multi-point, multi-access thermal energy storage system.

(SD2019-806) Course Description: Bending The Curve: Climate Change Solutions

“There is no single technology that will solve climate change. If we want to prepare our students to fight global warming, they need to understand the scientific and the human dimensions of the problem, and we need to give them the tools to address the problem.”     - Professor V. Ramanathan

Thermodynamic Integration Simulation Method for Filling Molecular Enclosures Using Spliced Soft-Core Interaction Potential

Researchers have developed a simulation method to determine the properties of molecular enclosures based on slow growth thermodynamic integration (SGTI).

Selective Deposition Of Diamond In Thermal Vias

UCLA researchers in the Department of Materials Science & Engineering have developed a new method of diamond deposition in integrated circuit vias for thermal dissipation.

  • Go to Page: