Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Agriculture & Animal Science > Processing and Packaging

Categories

[Search within category]

Non-melting, Sustainable, Reusable, Plastic-Free and Biodegradable Food Coolant Cubes

Researchers at the University of California, Davis, have developed a nature-based, plastic-free, non-melting, reusable, sustainable, self-cleanable (anti-fungal), and biodegradable robust cooling system for the applications in cold chains. The system has comparable cooling efficiency to traditional ice and drastically reduces water consumption, prevents potential microbial cross-contamination caused by melt-water, and eliminates the use of plastic and other synthetic materials.

Use of Ozone and Infrared Heating as a Pre-treatment for Drying Fruit

Sequential ozone and infrared pre-treatments prior to hot air drying of fruit inactivates enzymes responsible for fruit browning, and concurrently reduces microbial contamination risk and air drying time.

Sorting and Drying Methods for Off-ground Harvested Almonds

Researchers at the University of California, Davis have developed new methods for sorting and drying freshly harvested almonds with high processing and energy efficiency. 

Spray Dry Method for Calcium Cross-linked Alginate Encapsulation of Biological and Chemical Moieties via the Use of Chelating Agents

Researchers at the University of California, Davis have developed a one-step spray dry calcium cross-linked alginate encapsulation process where the calcium is released from a chelating agent.

Automated Drosophila Maintenance System

Drosophila spp., also known as fruit flies, are widely used in genetic research. Drosophila lines (e.g. flies with a particular mutation) can only be stored as live animals – they cannot be frozen and remain viable. So to maintain the stocks, the live flies are manually transferred from an old vial to a new vial on a regular basis (every 1-2 weeks). Some Drosophila labs maintain hundreds or even thousands of individual lines and so maintenance of these lines can be very time consuming. A UC Santa Cruz Drosophila researcher has developed a simpler and more efficient method of transferring the flies that requires significantly less hands-on work.

Non-Living Edible Surrogates For Process Validation Food Processing Plants

Researchers at the University of California, Davis have developed a surface sanitation validation system that utilizes a non-living edible surrogate to potentially help determine food processing efficacy.

Fish Tank Effluent Sampling System

Researchers at the University of California, Davis have developed a valve system to collect effluent waste from fish in a closed recirculating aquaponic system (RAS).

Detection of Concealed Damage in Raw Nuts

Researchers at the University of California, Davis have developed a nondestructive method for identifying raw nuts with concealed damage.

Robotic Plant Care Assistant

Researchers at the University of California, Davis have developed a robotic system can apply signaling to the crops and detect any important needs for the plant.

Gluten Digesting Bacterial Strains

Over the last few years Celiac disease and gluten intolerance has been on the rise. Currently, the only treatment is a gluten free diet, which is very difficult to follow. Cross contamination of gluten free products is common and many food items that seemingly contain no wheat contain gluten-derived products. Here we describe several bacterial strains isolated from humans for their gluten degrading activities. These bacteria may be used to eliminate trace amounts of wheat contaminants from gluten free products or as probiotic therapy.

Scanning for Spoilage of Food Contents in Metallic and Non-Metallic Containers

Researchers have developed a novel method to analyze the contents of closed metal containers to determine contamination in food products.

Method for Efficient Loading of Bioactives into Lipid Membrane Microcapsules

Researchers at the University of California, Davis have developed a method of delivering targeted bioactives that is applicable to the agricultural, food processing, cosmetic, veterinary and medical industries.

Novel and Effective Method of Developing Recombinant Proteins

Researchers at the University of California, Davis have developed a novel method to produce and recover high limits of recombinant protein from leaf tissue.

Shrink-Induced, Self-Driven Microfluidic Devices

The addition of novel surface modifications and use of shrink-wrap film to create devices will yield self-driven, shrink-induced microfluidic detection for samples such as bodily fluids. Novel fabrications and surfaces will have a profound impact on the creation of point of care diagnostics.

Superhydrophobic Induced High Numerical Plastic Lenses

The application of novel manufacturing techniques, chemical modifications and alternative materials produces the next generation of lenses. These lenses are inexpensive, contain improved numerical aperture and can be easily manufactured. Overall, these improvements create new applications for miniaturized optical and optical electronic devices.

Method for Debittering Olives and Production of Olive Abstracts Enriched with Polyphenolic Constituents

The present invention provides a new method for curing and debittering olives quickly without the use of brine or harsh chemicals, and will generate very little waste water!    

Method for Quantitative Digital Color Imaging of Objects

In many disciplines, quantitative measurements of color are required to evaluate nondestructively the state of an object (e.g., quality of produce). This characterization is typically performed using contact point measurement devices. A limitation of these devices is that multiple measurements are required to characterize an entire object; if multiple objects must be characterized, then this process may be time consuming. Furthermore, these devices interrogate both superficial and deeper structures in the object, and do not possess the ability to discriminate between these structures.

  • Go to Page: