Please login to create your UC TechAlerts.
Request a new password for
Required
Computational Framework for Numerical Probabilistic Seismic Hazard Analysis (PSHA)
Probabilistic Seismic Hazard Analysis (PSHA) has become a foundational method for determining seismic design levels and conducting regional seismic risk analyses for insurance risk analysis, governmental hazard mapping, critical infrastructure planning, and more. PSHA traditionally relies on two computationally intensive approaches: Riemann Sum and conventional Monte Carlo (MC) integration. The former requires fine slices across magnitude, distance, and ground motion, and the latter demands extensive synthetic earthquake catalogs. Both approaches become notably resource intensive for low-probability seismic hazards, where achieving a COV of 1% for a 10−4 annual hazard probability may require 108 MC samples. UC Berkeley researchers have developed an Adaptive Importance Sampling (AIS) PSHA, a novel framework to approximate optimal importance sampling (IS) distributions and dramatically reduce the number of MC samples to estimate hazards. Efficiency and accuracy of the proposed framework have been validated against Pacific Earthquake Engineering Research Center (PEER) PSHA benchmarks covering various seismic sources, including areal, vertical, and dipping faults, as well as combined types. Seismic hazards are calculated up to 3.7×104 and 7.1×103 times faster than Riemann Sum and traditional MC methods, respectively. Coefficients of variation (COVs) are below 1%. Enhanced “smart” AIS PSHA variants are also available that outperform “smart” implementations of Riemann Sum by a factor of up to 130.
Electrified Filters For Hexavalent Chromium Removal
While chromium (Cr) is recognized as an essential micronutrient, its hexavalent form, Cr(VI), is one of the ubiquitous metal contaminants prevalent in groundwater with toxicity and carcinogenic risks. After years of debate and analysis, California regulators adopted a limit of 10 ppb for Cr(VI) in drinking water in April 2024, which should lead to more stringent regulation of Cr(VI) nationwide and attract up to hundreds of millions of dollars in investment. Electroreduction of Cr(VI) to Cr(III) is a promising strategy for detoxication of Cr(VI), but the noble-metal-based and nanomaterial-based electrodes typically used for Cr(VI) reduction are expensive or require a complicated preparation process. Moreover, the majority of flat-sheet electrodes used in flow-by operation mode are constrained by surface area, which causes low mass transport, detoxication efficiency, and current efficiency, and generates high energy consumption. To meet these challenges, UC Berkeley researchers have developed a stainless-steel filter with the capability of selectively reducing Cr(VI) to Cr(III) in-situ during a single pass filtration process. The filter doesn’t require chemical inputs or generate waste sludge. It has demonstrated minimal electric energy consumption while removing Cr(VI) from real groundwater samples (Coachella Valley Water District, California, calculated at 0.00076 $/m3 –beating other techniques by several orders of magnitude). The water flux of the filter is adjustable to meet specific, realistic water treatment requirements, and it can furthermore be regenerated in-situ for long-term performance without off-site chemical-dependent cleaning procedures. This environmentally friendly filter efficiently removes Cr(VI) from traditional and non-traditional water sources using minimal energy input and with zero discharge, addressing critical issues in water scarcity and Cr(VI) contamination.
Methods and Systems for Rapid Antimicrobial Susceptibility Tests
Rapid antimicrobial susceptibility testing (AST) is a method for quickly determining the most effective antibiotic therapy for patients with bacterial infections. These techniques enable the detection and quantification of antibiotic-resistant and susceptible bacteria metabolites at concentrations near or below ng/mL in complex media. Employing bacterial metabolites as a sensing platform, the system integrates machine learning data analysis processes to differentiate between antibiotic susceptibility and resistance in clinical infections within an hour. With the results, a clinician can prescribe appropriate medicine for the patient's bacterial infection.
Next Generation Of Emergency System Based On Wireless Sensor Network
Recent mass evacuation events, including the 2018 Camp Fire and 2023 Maui Fire, have demonstrated shortcomings in our communication abilities during natural disasters and emergencies. Individuals fleeing dangerous areas were unable to obtain fast or accurate information pertaining to open evacuation routes and faced traffic gridlocks, while nearby communities were unprepared for the emergent situation and influx of persons. Climate change is increasing the frequency, areas subject to, and risk-level associated with natural hazards, making effective communication channels that can operate when mobile network-based systems and electric distribution systems are compromised crucial. To address this need UC Berkeley researchers have developed a mobile network-free communication system that can function during natural disasters and be adapted to most communication devices (mobile phones and laptops). The self-organized, mesh-based and low-power network is embedded into common infrastructure monitoring device nodes (e.g., pre-existing WSN, LoRa, and other LPWAN devices) for effective local communication. Local communication contains dedicated Emergency Messaging and “walkie-talkie” functions, while higher level connectivity through robust gateway architecture and data transmission units allows for real-time internet access, communication with nearby communities, and even global connectivity. The system can provide GPS-free position information using trilateration, which can help identify the location of nodes monitoring important environmental conditions or allowing users to navigate.
Ultra-Sensitive Polybrominated Diphenyl Ether (PBDE) Detector
Polybrominated diphenyl ethers (PBDEs) are a common brominated flame retardant, which are commonly found in consumer products. Because they are not chemically bound to polymers, PBDEs are blended in during formation and have the ability to migrate from products into the environment. Studies suggest that PBDEs pose potential health risks such as hormone disruptors, adverse neurobehavioral toxins and reproductive or developmental effects. For this reason it is important to have the capability to sense the presence of PBDEs even in low concentrations.
Portable waterborne pathogen detector
The inventors at the University of California, Irvine, have developed an automated, easy-to-use digital PCR system that can be used at the time of sample collection, making it highly effective in microbial pathogen analysis in resource-limited settings and extreme conditions.
MyShake: Earth Quake Early Warning System Based on Smartphones
Earthquakes are unpredictable disasters. Earthquake early warning (EEW) systems have the potential to mitigate this unpredictability by providing seconds to minutes of warning. This warning could enable people to move to safe zones, and machinery (such as mass transit trains) to be slowed or shutdown. The several EEW systems operating around the world use conventional seismic and geodetic network infrastructure – that only exist in a few nations. However, the proliferation of smartphones – which contain accelerometers that could potentially detect earthquakes – offers an opportunity to create EEW systems without the need to build expensive infrastructure. To take advantage of this smartphone opportunity, researchers at the University of California, Berkeley have developed a technology to allow earthquake alerts to be issued based on detecting earthquakes underway using the sensors in smartphones. Called MyShake, this EEW system has been shown to record magnitude 5 earthquakes at distances of 10 km or less. MyShake incorporates an on-phone detection capability to distinguish earthquakes from every-day shakes. The UC Berkeley technology also collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is underway as well as estimates the location and magnitude in real-time. This information can then be used to issue an alert of forthcoming ground shaking. Additionally, the seismic waveforms recorded by MyShake could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.
Identification Of New Synthetic Elicitors Of Plant Immune Responses
Brief description not available
An Ultra-Sensitive Method for Detecting Molecules
To-date, plasmon detection methods have been utilized in the life sciences, electrochemistry, chemical vapor detection, and food safety. While passive surface plasmon resonators have lead to high-sensitivity detection in real time without further contaminating the environment with labels. Unfortunately, because these systems are passively excited, they are intrinsically limited by a loss of metal, which leads to decreased sensitivity. Researchers at the University of California, Berkeley have developed a novel method to detect distinct molecules in air under normal conditions to achieve sub-parts per billion detection limits, the lowest limit reported. This device can be used detecting a wide array of molecules including explosives or bio molecular diagnostics utilizing the first instance of active plasmon sensor, free of metal losses and operating deep below the diffraction limit for visible light. This novel detection method has been shown to have superior performance than monitoring the wavelength shift, which is widely used in passive surface plasmon sensors.
Carbon Sequestration Using a Magnetic Treatment System
The technology is a technique for the capture and removal of carbonates in natural water sources.It features the use of an alternating electromagnetic field (AMF) to induce the formation of calcium carbonate or other carbonate compounds in suspension in water source. Additionally, carbonate compounds are removed using filtration device.
Human Butyrylcholinesterase and Acetylcholinesterase Based Catalytic Bioscavengers of Organophosphates
Exposure to organophosphates (OP) from both pesticides and nerve agents leads to inhibition of acetylcholinesterase (AChE), resulting in a build-up of acetylcholine in the body, and potentially death. The only OP stoichiometric bioscavenger in use today is butyrylcholinesterase (hBChE). Human butylcholinesterase (hBChE) specifically and efficiently captures offending OP molecules in the circulation of exposed individuals, sequestering the OP as an inactive conjugate in the plasma.
RNA-based, Amplification-free, Microbial Identification using Nano-Enabled Electronic Detection
A Rapid Method To Measure Cyanide In Biological Samples In The Field
Cyanide is a highly toxic and rapidly acting poison that is infamous due to its use in murders, suicides, wars and attempted genocide.In the present day, cyanide may be responsible for up to 10,000 deaths annually in the United States due to smoke inhalation.Cyanide may also be used as a terrorist weapon. Prior methods to measure cyanide in the blood have involved acidifying the blood after lysis of red blood cells.However, this method is time consuming (takes at least a few hours) and tedious, and thus, inadequate for rapid detection of cyanide toxicity in field or hospital settings.Field or laboratory devices capable of rapidly measuring cyanide levels in blood or body fluids are not currently available, however such field or laboratory devices would be highly useful. Researchers at the University of California, Irvine have developed a method to rapidly measure cyanide in biological samples, which can be carried out in field settings.This method is based on measuring cyanide based on spectral changes that occur when cyanide binds to the reagent.Advantages of this method are its ease of use, stability, and applicability across a wide range of cyanide concentrations and may be used with ease in the field or on laboratory devices.
Rapid Detection of Explosives
Biosensor for Nerve Agents and Pesticides