Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices

Tech ID: 25247 / UC Case 2005-668-0

BRIEF DESCRIPTION
A method to grow semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices on suitable substrates or planar templates in which a large area of the semipolar film is parallel to the substrate surface.

BACKGROUND
The usefulness of gallium nitride (GaN) and its ternary and quaternary compounds incorporating aluminum and indium has been well established for fabrication of visible and ultraviolet optoelectronic devices. Current nitride technology for these devices uses nitride films grown along the polar c-direction; however, quantum-well active regions in devices suffer from the quantum-confined Stark effect (QCSE). One way to combat the issue is to grow films on semipolar planes of GaN in order to improve device performance by reduce polarization effects and increasing the efficiency of optical transitions.

DESCRIPTION
Researchers at UC Santa Barbara have developed a method to grow semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices on suitable substrates or planar templates in which a large area of the semipolar film is parallel to the substrate surface. The method uses vapor phase epitaxy, such as metalorganic chemical vapor deposition (MOCVD), in order to grow the semipolar structures. Additionally, this technique alters the crystal growth orientation in order to reduce polarization effects in nitride thin films. This method is stable, energy efficient and cost-effective.

ADVANTAGES
- Reduces the negative impact of polarization
- Improved device efficiency
- Improved crystal growth orientation

APPLICATIONS
- LEDs and Laser Diodes (LDs)
- Semiconductors

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>10,529,892</td>
<td>01/07/2020</td>
<td>2005-668</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>9,793,435</td>
<td>10/17/2017</td>
<td>2005-668</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>9,231,376</td>
<td>01/05/2016</td>
<td>2005-668</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,686,466</td>
<td>04/01/2014</td>
<td>2005-668</td>
</tr>
</tbody>
</table>

INVENTORS
- Baker, Troy J.
- Chakraborty, Arpan
- DenBaars, Steven P.
- Farrell, Robert M.
- Haskell, Benjamin A.
- Mishra, Umesh K.
- Nakamura, Shuji
- Pattison, Paul M.
- Sharma, Rajat
- Speck, James S.

OTHER INFORMATION
KEYWORDS
- indssl, indled, MOCVD, thin films

CATEGORIZED AS
- Optics and Photonics
 - All Optics and Photonics
- Energy
 - Lighting
- Semiconductors
 - Design and Fabrication

RELATED CASES
2005-668-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
- High Efficiency LED with Optimized Photonic Crystal Extractor
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Edge-Emitting Laser Diode with Via-Activated Tunnel Junction Contact
- Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Novel Current-Blocking Layer in High-Power Current Aperture Vertical Electron Transistors (CAVETs)
- In-Situ Methods Of Preventing Interfacial Impurities And Dry Etch-Induced Damage In Regrown III-Nitride Structures
- Enhanced Hole Injection by P-Type Active Region and Lateral Injection in InAlGaN LEDs
- Improved Manufacturing of Solid State Lasers via Patterning of Photonic Crystals
- III-N Transistor With Stepped Cap Layers
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Multifaceted III-Nitride Surface-Emitting Laser
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- III-Nitride VCSEL with a High Indium Content Active Region
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- Photoelectrochemical Etching for Chip Shaping Of LEDs
- III-V Nitride Device Structures on Patterned Substrates
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Method for Increasing GaN Substrate Area in Nitride Devices
- Burying Impurities And Defects In Regrown III-Nitride Structures
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Polarization-Doped Field Effect Transistors with Increased Performance
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Improved Manufacturing of Semiconductor Lasers
- LED Device Structures with Minimized Light Re-Absorption
- Improved Light Extraction with Geometrically Tuned LED Arrays
- Growth of Planar Semi-Polar Gallium Nitride
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AllInN and AlInGaN Alloys
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- Wafer Bonding for Embedding Active Regions with Relaxed Nanofeatures
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD
- III-N Based Material Structures and Circuit Modules Based on Strain Management