Transparent Mirrorless (TML) LEDs
Tech ID: 25240 / UC Case 2007-273-0

BRIEF DESCRIPTION
Minimizes the re-absorption of LED light by using transparent conductive oxide electrodes (ITO or ZnO) instead of mirrors.

BACKGROUND
Conventional LEDs utilize mirrors in order to increase the front emissions of particular wavelengths of light by reflecting the LED light forward. In order to increase the output power for the front side of the LED, the emitting light is reflected by the mirror on the backside of the sapphire substrate. These reflected emissions are partly re-absorbed by the active layer of the LED, reducing the output power and efficient of the LED.

DESCRIPTION
An invention created by UC Santa Barbara researchers minimizes the re-absorption of LED light by using transparent conductive oxide electrodes (ITO or ZnO) instead of mirrors. This type of LED also employs a gallium nitride substrate instead of a sapphire substrate in order to create more efficient quantum wells and utilizes textured phosphor layers in order to increase luminous efficacy. The combination of transparent conductive oxide electrodes with a nitride LED and a shaped lens results in high levels of light extraction.

ADVANTAGES
▷ Reduces reflection
▷ Minimizes light re-absorption
▷ Increases efficiency

APPLICATIONS
▷ Light emitting diodes (LEDs)

PATENT STATUS
<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
</table>

RELATED CASES
2007-273-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
▷ Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
▷ Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
▷ Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
▷ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
▷ Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
▷ III-Nitride-Based Devices Grown With Relaxed Active Region
▷ Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
▷ Defect Reduction in GaN films using in-situ SiNx Nanomask
▷ Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
▷ Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
▷ Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
▷ Low Temperature Deposition of Magnesium Doped Nitride Films
▷ Improved GaN Substrates Prepared with Ammonothermal Growth
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- Size-Independent Forward Voltage Micro-LED with an Epitaxial Junction
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Semipolar Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Oxyfluoride Phosphors for Use in White Light LED
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- Thermally Stable, Laser-Driven White Lighting Device
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Highly Compact, High-Index Dielectric Nanostructures for Deep-Ultraviolet Devices
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Improved Manufacturing of Solid State Lasers via Patterning of Photonic Crystals
- High Efficiency III-Nitride Devices with Smooth Relaxed InGaN Buffer and Strain Compliant Template
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- III-V Nitride Device Structures on Patterned Substrates
- Activation of P-Type Layers of Tunnel Junctions in Micro-LEDs
- Method for Increasing GaN Substrate Area in Nitride Devices
- Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- LED Device Structures with Minimized Light Re-Absorption
- Growth of Planar Semi-Polar Gallium Nitride
- Nonpolar (Al, In, Ga)N Quantum Well Design
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD