Improved GaN Substrates Prepared with Ammonothermal Growth

Tech ID: 23650 / UC Case 2006-666-0

BRIEF DESCRIPTION

A method for growing m-plane GaN using an ammonothermal growth technique.

BACKGROUND

The usefulness of gallium nitride (GaN) and its alloys has been well established for its use in the fabrication of optoelectronic and high-powered electronic devices. Most commercially available GaN-based devices are grown on conventional c-plane surfaces. The use of c-plane surfaces has disadvantages, which limit the performance of resulting devices. Recent studies have pointed out several benefits and advantages of growing m-plane devices. Despite these benefits, current technology is limited due to poor smoothness of m-plane surfaces.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a method for growing m-plane GaN using an ammonothermal growth technique. Using this method, m-plane growth results in smoother surfaces than c-plane growth. M-plane growth has associated benefits such as p-type doping and inverted polarization charge. High p-type conductivity improves device efficiency, while transistors grown on m-plane GaN overcome high gate leakage problems of traditional GaN transistors. M-plane optical devices also experience higher emission efficiency due to the absence of a polarization field, and their optically active layer usually has higher Indium incorporation, allowing for longer wavelength emission. This novel method also reduces processing steps because flip-chip bonding and de-bonding steps are no longer needed to expose the m-plane of the growth.

ADVANTAGES

- Smoother substrate surface
- Improved device efficiency

APPLICATIONS

- LEDs and Laser Diodes
- High Electron Mobility Transistors (HEMTs)
- Power switching devices

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,263,424</td>
<td>09/11/2012</td>
<td>2006-666</td>
</tr>
</tbody>
</table>

INVENTORS

- Hashimoto, Tadao
- Nakamura, Shuji
- Sato, Hitoshi

CONTACT

University of California, Santa Barbara Office of Technology & Industry Alliances
dobis@tia.ucsb.edu
tel: View Phone Number.

OTHER INFORMATION

KEYWORDS
indssl, indammono,
ammonothermal, centEE, indbulk,
indfeat

CATEGORIZED AS

- Engineering
- Energy
- Lighting
- Optics and Photonics
- All Optics and Photonics
- Semiconductors
- Design and Fabrication

RELATED CASES

2006-666-0
ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- III-Nitride-Based Devices Grown With Relaxed Active Region
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- Size-Independent Forward Voltage Micro-LED with an Epitaxial Junction
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Highly Compact, High-Index Dielectric Nanostructures for Deep-Ultraviolet Devices
- Growth of Group III-Nitride Crystals using Supercritical Ammonia and Nitrogen
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- High Efficiency III-Nitride Devices with Smooth Relaxed InGaN Buffer and Strain Compliant Template
- Multifaceted III-Nitride Surface-Emitting Laser
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- III-V Nitride Device Structures on Patterned Substrates
- Activation of P-Type Layers of Tunnel Junctions in Micro-LEDs
- Method for Increasing GaN Substrate Area in Nitride Devices
- Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- LED Device Structures with Minimized Light Re-Absorption
- Growth of Planar Semi-Polar Gallium Nitride
UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys

III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture

Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD