BRIEF DESCRIPTION

A novel method for growing high quality semipolar III-V nitride based optoelectronic devices.

BACKGROUND

Current nitride technology for electronic and optoelectronic devices employs nitride films grown in the polar c-direction. Unfortunately, the structure of III-nitride based devices suffers from the undesirable quantum-confined Stark effect (QCSE), due to the strong electric fields and polarization effects along the c-direction. While growing devices on nonpolar planes of the crystal seems advantageous, growth of nonpolar nitrides remains challenging and has not yet been widely adopted in the industry.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a novel method for growing high quality semipolar III-V nitride based optoelectronic devices. This includes growing an active layer on suitable material with facetted surfaces, which are typically semipolar planes, and a method for fabricating the facetted surfaces. The use of these growth techniques results in semipolar light emitting layers with a low defect density through reduction of the polarization effects in GaN devices. Furthermore, these layers may be grown using commonly used techniques including, MOCVD, MBE, or HPVE.

ADVANTAGES

- Lower defect density
- Higher quality devices
- Uses widely adopted growth techniques

APPLICATIONS

- Optoelectronic devices
- High power electronic devices

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,203,159</td>
<td>06/19/2012</td>
<td>2006-422</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>7,858,996</td>
<td>12/28/2010</td>
<td>2006-422</td>
</tr>
</tbody>
</table>

CONTACT

University of California, Santa Barbara Office of Technology & Industry Alliances
dobis@tia.ucsb.edu
tel: View Phone Number.