

Technology & Industry Alliances Available Technologies Contact Us

Request Information

Permalink

Growth of Semipolar III-V Nitride Films with Lower Defect Density

Tech ID: 23649 / UC Case 2006-422-0

BRIEF DESCRIPTION

A novel method for growing high quality semipolar III-V nitride based optoelectronic devices.

BACKGROUND

Current nitride technology for electronic and optoelectronic devices employs nitride films grown in the polar c-direction. Unfortunately, the structure of III-nitride based devices suffers from the undesirable quantum-confined Stark effect (QCSE), due to the strong electric fields and polarization effects along the c-direction. While growing devices on nonpolar planes of the crystal seems advantageous, growth of nonpolar nitrides remains challenging and has not yet been widely adopted in the industry.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a novel method for growing high quality semipolar III-V nitride based optoelectronic devices. This includes growing an active layer on suitable material with facetted surfaces, which are typically semipolar planes, and a method for fabricating the facetted surfaces. The use of these growth techniques results in semipolar light emitting layers with a low defect density through reduction of the polarization effects in GaN devices. Furthermore, these layers may be grown using commonly used techniques including, MOCVD, MBE, or HPVE.

ADVANTAGES

- ► Lower defect density
- ► Higher quality devices
- ▶ Uses widely adopted growth techniques

CONTACT

University of California, Santa Barbara Office of Technology & Industry Alliances padilla@tia.ucsb.edu

tel: 805-893-2073.

INVENTORS

- ▶ DenBaars, Steven P.
- Kaeding, John F.
- Nakamura, Shuji
- ► Sharma, Rajat
- ▶ Speck, James S.
- ➤ Zhong, Hong

OTHER INFORMATION

KEYWORDS

nitride films, indssl, indbulk

CATEGORIZED AS

- Engineering
- **▶** Optics and Photonics
 - All Optics and
 - Photonics
- **▶** Semiconductors
 - Design and
 - Fabrication

RELATED CASES

2006-422-0

- Optoelectronic devices
- ► High power electronic devices

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	8,203,159	06/19/2012	2006-422
United States Of America	Issued Patent	7,858,996	12/28/2010	2006-422

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ► Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- ▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- ▶ Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- III-Nitride-Based Vertical Cavity Surface Emitting Laser (VCSEL) with a Dielectric P-Side Lens
- ► Aluminum-cladding-free Nonpolar III-Nitride LEDs and LDs
- ▶ Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- ▶ Defect Reduction in GaN films using in-situ SiNx Nanomask
- ▶ Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Implantable Light Irradiation Device For Photodynamic Therapy
- ► Low Temperature Deposition of Magnesium Doped Nitride Films
- ► Transparent Mirrorless (TML) LEDs
- ▶ Improved GaN Substrates Prepared with Ammonothermal Growth
- ▶ Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- ▶ Method for Enhancing Growth of Semipolar Nitride Devices
- ▶ Ultraviolet Laser Diode on Nano-Porous AlGaN template
- ▶ Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
- ► Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- ▶ Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- ► Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- ▶ High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- ▶ Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- ► Oxyfluoride Phosphors for Use in White Light LEDs
- ▶ Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,AI)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- ► Thermally Stable, Laser-Driven White Lighting Device
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- ► Methods for Fabricating III-Nitride Tunnel Junction Devices
- ► Low-Droop LED Structure on GaN Semi-polar Substrates
- ► Contact Architectures for Tunnel Junction Devices
- ▶ Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- ▶ Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance

- ▶ III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
- ► III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- ► Tunable White Light Based on Polarization-Sensitive LEDs
- ► Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- ► Growth of High-Performance M-plane GaN Optical Devices
- ▶ Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- Novel Multilayer Structure for High-Efficiency UV and Far-UV Light-Emitting Devices
- ► III-V Nitride Device Structures on Patterned Substrates
- ▶ Method for Increasing GaN Substrate Area in Nitride Devices
- ► High-Intensity Solid State White Laser Diode
- ▶ Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- ► GaN-Based Thermoelectric Device for Micro-Power Generation
- ▶ Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- ► LED Device Structures with Minimized Light Re-Absorption
- ► Growth of Planar Semi-Polar Gallium Nitride
- ▶ High-Efficiency and High-Power III-Nitride Devices Grown on or Above a Strain Relaxed Template
- ▶ UV Optoelectronic Devices Based on Nonpolar and Semi-polar AllnN and AllnGaN Alloys
- ▶ Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- ► III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- ► Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD

