MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
Tech ID: 21917 / UC Case 2005-566-0

BRIEF DESCRIPTION

Methods for successfully growing planar non-polar m-plane gallium nitride (GaN) with metalorganic chemical vapor deposition (MOCVD).

BACKGROUND

It is relatively easy to grow c-plane GaN due to its large growth window (pressure, temperature and precursor flows) and its stability. However, as a result of c-plane growth, each material layer suffers from separation of electrons and holes to opposite faces of the layers. Furthermore, strain at the interfaces between adjacent layers gives rise to piezoelectric polarization, causing further charge separation. Such polarization effects decrease the likelihood of electrons and holes recombining, causing the device to perform poorly.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed methods for successfully growing planar non-polar m-plane gallium nitride (GaN) with metalorganic chemical vapor deposition (MOCVD). These methods take advantage of non-polar nature of m-plane GaN to eliminate polarization fields, and gives rise to flexibility in growth variables, such as temperature, pressure and precursor flows, utilizing the advantage of m-GaN stability during growth.

ADVANTAGES

- Eliminates polarization fields
- More flexibility in growth variables

APPLICATIONS

Growth of non-polar GaN films
GaN-based devices

This technology is available for a non-exclusive license. See below for a selection of the patents and patent applications related to this invention. Please inquire for full patent portfolio status.

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,795,440</td>
<td>08/05/2014</td>
<td>2005-566</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,097,481</td>
<td>01/17/2012</td>
<td>2005-566</td>
</tr>
</tbody>
</table>

RELATED CASES

2005-566-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
- High Efficiency LED with Optimized Photonic Crystal Extractor
Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Volumetric Hole Injection with Intentional V-Defects
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Method for Growing Self-Assembled Quantum Dot Lattices
- Size-Independent Forward Voltage Micro-LED with an Epitaxial Junction
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Incorporating Temperature-Sensitive Layers in III-N Devices
- Oxyfluoride Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Heterogeneously Integrated GaN on Si Photonic Integrated Circuits
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Improved Manufacturing of Solid State Lasers via Patterned of Photonic Crystals
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Multifaceted III-Nitride Surface-Emitting Laser
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- III-V Nitride Device Structures on Patterned Substrates
- Activation of P-Type Layers of Tunnel Junctions in Micro-LEDs
- Method for Increasing GaN Substrate Area in Nitride Devices
- Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact

- Method for Increasing GaN Substrate Area in Nitride Devices
- Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Improved Manufacturing of Semiconductor Lasers
- LED Device Structures with Minimized Light Re-Absorption
- Growth of Planar Semi-Polar Gallium Nitride
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Integration And Mass Transfer Of Microleds
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- Wafer Bonding for Embedding Active Regions with Relaxed Nanostructures
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD