Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
Tech ID: 21914 / UC Case 2005-565-0

BRIEF DESCRIPTION
Sidewall lateral epitaxial overgrowth (SLEO) of non-polar a-plane and m-plane GaN that results in several device improvements such as longer lifetimes, less leakage current, more efficient doping and higher output efficiency.

BACKGROUND
It is relatively easy to grow c-plane GaN due to its large growth window (pressure, temperature and precursor flows) and its stability. However, as a result of c-plane growth, each material layer suffers from separation of electrons and holes to opposite faces of the layers. Furthermore, strain at the interfaces between adjacent layers gives rise to piezoelectric polarization, causing further charge separation. Such polarization effects decrease the likelihood of electrons and holes recombining, causing the device to perform poorly. Another reason why GaN materials perform poorly is the presence of defects due to lack of a lattice matched substrate. There is an ever-increasing effort to reduce the dislocation density in GaN films in order to improve device performance.

DESCRIPTION
Researchers at the University of California, Santa Barbara have successfully developed sidewall lateral epitaxial overgrowth (SLEO) of non-polar a-plane and m-plane GaN. By using single step lateral epitaxial overgrowth, dislocation densities can be reduced and stacking faults are localized only on the nitrogen faces. Dislocation densities can be reduced down to even lower values by eliminating defects not only in the overgrown regions but also in the window regions. Also, by favoring gallium (Ga) face growth and limiting nitrogen (N) face growth stacking fault densities can be made orders of magnitude lower. The present invention also takes advantage of the orientation of non-polar III-Nitrides to eliminate polarization fields. As a result, with the material produced by utilizing this invention, device improvements such as longer lifetimes, less leakage current, more efficient doping and higher output efficiency are possible. In addition, a thick non-polar and semi-polar nitride free-standing substrate, which is needed to solve the lattice mismatch issue, can be produced over this excellent material.

ADVANTAGES
> Reduced dislocation density in GaN films
> Reduced stacking fault density
> Eliminates polarization fields
> Improved performance in GaN-based devices (longer lifetimes, less leakage current, more efficient doping and higher output efficiency)

APPLICATIONS
> Non-polar and semi-polar GaN films
> GaN-based devices

This technology is available for a non-exclusive license. See below for a selection of the patents and patent applications related to this invention. Please inquire for full patent portfolio status.

INVENTORS
> DenBaars, Steven P.
> Imer, Bilge M.
> Speck, James S.

OTHER INFORMATION
KEYWORDS
indssl, indled, GaN, III-Nitrides, cenIEE

CATEGORIZED AS
> Engineering
> Optics and Photonics
> Semiconductors
> Design and Fabrication

RELATED CASES
2005-565-0
ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
- High Efficiency LED with Optimized Photonic Crystal Extractor
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Lift-off Technique
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Volumetric Hole Injection with Intentional V-Defects
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Laser Diode With Tunnel Junction Contact Surface Grating
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Method for Growing Self-Assembled Quantum Dot Lattices
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Incorporating Temperature-Sensitive Layers in III-N Devices
- Oxide Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Heterogeneously Integrated GaN on Si Photonic Integrated Circuits
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Improved Manufacturing of Solid State Lasers via Patternning of Photonic Crystals
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
Improved Anisotropic Strain Control in Semipolar Nitride Devices
High Light Extraction Efficiency III-Nitride LED
Photoelectrochemical Etching for Chip Shaping Of LEDs
III-V Nitride Device Structures on Patterned Substrates
Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
Method for Increasing GaN Substrate Area in Nitride Devices
Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
GaN-Based Thermoelectric Device for Micro-Power Generation
Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
LED Device Structures with Minimized Light Re-Absorption
Growth of Planar Semi-Polar Gallium Nitride
Nonpolar (Al, B, In, Ga)N Quantum Well Design
UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
Integration And Mass Transfer Of Microleds
Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
Wafer Bonding for Embedding Active Regions with Relaxed Nanofeatures
Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD