Growth of Planar Semi-Polar Gallium Nitride
Tech ID: 21912 / UC Case 2005-471-0

BRIEF DESCRIPTION
A technique for the growth of planar films of semi-polar nitrides, in which a large area of (Al, In, Ga)N is grown parallel to the substrate surface.

BACKGROUND
Current nitride technology for electronic and optoelectronic devices employs nitride films grown along the polar c-direction. However, conventional c-plane quantum well structures in III-nitride based optoelectronic and electronic devices suffer from the undesirable quantum-confined Stark effect (QCSE), due to the existence of strong piezoelectric effects and spontaneous polarizations. The strong built-in electric fields along the c-direction cause spatial separation of electrons and holes that in turn give rise to restricted carrier recombination efficiency, reduced oscillator strength, and red-shifted emission. The growth of non-polar GaN remains challenging and has not yet been widely adopted in the III-nitride industry.

DESCRIPTION
Researchers at the University of California, Santa Barbara have developed a technique for the growth of planar films of semi-polar nitrides, in which a large area of (Al, In, Ga)N is grown parallel to the substrate surface. For example, samples can be grown on 10 mm x 10 mm or 2 inch diameter substrates. The advantage of semi-polar over c-plane nitride films is the reduction in polarization and the associated increase in internal quantum efficiency for certain devices.

ADVANTAGES
▶ Reduction in polarization and the associated increase in internal quantum efficiency for certain devices
▶ Easier to grow compared to non-polar nitride films

APPLICATIONS
▶ Production of planar semi-polar gallium nitride

This technology is available for a non-exclusive license. See below for a selection of the patents and patent applications related to this invention. Please inquire for full patent portfolio status.

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,524,012</td>
<td>09/03/2013</td>
<td>2005-471</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,128,756</td>
<td>03/06/2012</td>
<td>2005-471</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>7,220,324</td>
<td>05/22/2007</td>
<td>2005-471</td>
</tr>
</tbody>
</table>

CATEGORIZED AS
▶ Engineering
▶ Semiconductors
▶ Design and Fabrication

RELATED CASES
2005-471-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
▶ Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
▶ Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
▶ Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
Lateral Growth Method for Defect Reduction of Semipolar Nitride Films

Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation

Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation

III-Nitride-Based Devices Grown With Relaxed Active Region

Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)

Defect Reduction in GaN films using in-situ SiNx Nanomask

Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide

Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes

Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices

Low Temperature Deposition of Magnesium Doped Nitride Films

Transparent Mirrorless (TML) LEDs

Improved GaN Substrates Prepared with Ammonothermal Growth

Optimization of Laser Bar Orientation for Nonpolar Laser Diodes

Size-Independent Forward Voltage Micro-LED with an Epitaxial Junction

Method for Enhancing Growth of Semipolar Nitride Devices

III-Nitride Tunnel Junction with Modified Interface

Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals

Nonpolar III-Nitride LEDs With Long Wavelength Emission

Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices

Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films

Increased Light Extraction with Multistep Deposition of ZnO on GaN

Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs

Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications

Engineering of V-Defects for Efficient III-Nitride LEDs

High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices

Method for Growing High-Quality Group III-Nitride Crystals

Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure

Oxyfluoride Phosphors for Use in White Light LEDs

Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices

(In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance

Thermally Stable, Laser-Driven White Lighting Device

MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride

Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy

Highly Compact, High-Index Dielectric Nanostructures for Deep-Ultraviolet Devices

Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs

Methods for Fabricating III-Nitride Tunnel Junction Devices

Low-Droop LED Structure on GaN Semi-polar Substrates

Contact Architectures for Tunnel Junction Devices

Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface

Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures

Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance

III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material

Growth of Semipolar III-V Nitride Films with Lower Defect Density

III-Nitride Tunnel Junction LED with High Wall Plug Efficiency

Improved Manufacturing of Solid State Lasers via Patterned of Photonic Crystals

High Efficiency III-Nitride Devices with Smooth Relaxed InGaN Buffer and Strain Compliant Template

Multifaceted III-Nitride Surface-Emitting Laser

Tunable White Light Based on Polarization-Sensitive LEDs

Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN

Growth of High-Performance M-plane GaN Optical Devices

Packaging Technique for the Fabrication of Polarized Light Emitting Diodes

Improved Anisotropic Strain Control in Semipolar Nitride Devices

High Light Extraction Efficiency III-Nitride LED

III-V Nitride Device Structures on Patterned Substrates

Activation of P-Type Layers of Tunnel Junctions in Micro-LEDs

Method for Increasing GaN Substrate Area in Nitride Devices
Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
GaN-Based Thermoelectric Device for Micro-Power Generation
Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
LED Device Structures with Minimized Light Re-Absorption
Nonpolar (Al, B, In, Ga)N Quantum Well Design
UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD