Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD
Tech ID: 21821 / UC Case 2006-178-0

BRIEF DESCRIPTION

BACKGROUND
Existing methods of producing semipolar nitride films are extremely cumbersome and yield areas too small for device fabrication, thus there is a need for a new method that overcomes these obstacles in order to take advantage of the performance benefits of using semipolar nitride films.

DESCRIPTION
Researchers at the University of California, Santa Barbara have developed a method for enhancing growth of semipolar (Al,In,Ga,B)N films via metalorganic chemical vapor deposition (MOCVD). This method involves growth of nitride films on the semipolar {11 22} plane to overcome performance limitations associated with the polar c-plane, thus increasing device efficiencies. It yields samples grown on 2-inch diameter substrates, compared with areas of a few micrometers accomplished using existing methods. This method also results in a planar film surface, few surface undulations, and a reduced number of crystallographic defects, all necessary features to support application to state-of-the-art nitride semipolar electronic devices.

ADVANTAGES
▶ Large available surface area (samples grown on 2-inch diameter substrates, compared to areas on the order of a few micrometers achieved by prior art)
▶ Increased device efficiencies compared to c-plane devices
▶ Planar film surface
▶ Minimized surface undulations and crystallographic defects

APPLICATIONS
▶ High-Performance Nitride-Based Optoelectronics and Semiconductor Devices

This technology is available for licensing. See below for a selection of the patents and patent applications related to this invention. Please inquire for full patent portfolio status.

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,405,128</td>
<td>03/26/2013</td>
<td>2006-178</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>7,687,293</td>
<td>03/30/2010</td>
<td>2006-178</td>
</tr>
</tbody>
</table>

RELATED CASES
2006-178-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
▶ Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
▶ High Efficiency LED with Optimized Photonic Crystal Extractor
▶ Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
Edge-Emitting Laser Diode with Via-Activated Tunnel Junction Contact

Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers

Lateral Growth Method for Defect Reduction of Semipolar Nitride Films

Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Lift-off Technique

Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation

Gallium-containing MicroLEDs for Displays

Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)

Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals

Defect Reduction in GaN films using in-situ SiNx Nanomask

Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide

Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes

Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices

Phosphor-Free White Light Source

Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure

Low Temperature Deposition of Magnesium Doped Nitride Films

Transparent Mirrorless (TML) LEDs

Improved GaN Substrates Prepared with Ammonothermal Growth

Laser Diode With Tunnel Junction Contact Surface Grating

Optimization of Laser Bar Orientation for Nonpolar Laser Diodes

High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes

Method for Enhancing Growth of Semipolar Nitride Devices

III-Nitride Tunnel Junction with Modified Interface

Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals

Nonpolar III-Nitride LEDs With Long Wavelength Emission

Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices

Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films

Increased Light Extraction with Multistep Deposition of ZnO on GaN

Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs

Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications

High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices

Method for Growing High-Quality Group III-Nitride Crystals

Near-Infrared, Flip-Chip, TCO-Clad, InGaN Quantum Dot Laser Diode

Incorporating Temperature-Sensitive Layers in III-N Devices

Oxyfluoride Phosphors for Use in White Light LEDs

Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices

(In,Ga,AI)N Optoelectronic Devices with Thicker Active Layers for Improved Performance

MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride

Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy

Heterogeneously Integrated GaN on Si Photonic Integrated Circuits

(Al, In, Ga, B)N Device Structures

Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs

Methods for Fabricating III-Nitride Tunnel Junction Devices

Formation of Transparent Integrated MicroLED Displays

Low-Droop LED Structure on GaN Semi-polar Substrates

Contact Architectures for Tunnel Junction Devices

Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface

Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures

Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance

Growth of Semipolar III-V Nitride Films with Lower Defect Density

III-Nitride Tunnel Junction LED with High Wall Plug Efficiency

Improved Manufacturing of Solid State Lasers via Patterned of Photonic Crystals

Solid Solution Phosphors for Use in Solid State White Lighting Applications

Multifaceted III-Nitride Surface-Emitting Laser

Tunable White Light Based on Polarization-Sensitive LEDs

Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN

III-Nitride VCSEL with a High Indium Content Active Region