Proteoglycan Mimetics For Enhanced Wound Healing Angiogenesis And Vascular Repair

Tech ID: 29598 / UC Case 2018-492-0

Abstract

Researchers at the University of California, Davis We have developed proteoglycan mimetics that alters the extracellular environment to promote local vascular repair and wound healing.

Full Description

Current therapies for treating wounds and ischemia often use growth factors, such as vascular endothelial growth factor (VEGF) and stents promote revascularization and blood vessel growth and prevent closure of a blood vessel. The clinical success of such growth factor therapies for wounds, however, have been limited dude to overexpression of matrix metalloproteases (MMPs) after injury which can degrade and inactivate the growth factors. Additionally, while stents provide structural support and are effective in preventing artery closure short term, they are ineffective in preventing restenosis (even with the introduction of drug-eluting stents (DESs)) long term.

Researchers at the University of California, Davis We have developed proteoglycan mimetics that alter the extracellular environment to promote local vascular repair and wound healing without the use of stents. This method utilizes a combination of collagen-binding and integrin-binding peptides and a glycan to target and enhance endothelial cell and endothelial progenitor cell capture. The pro-angiogenic scaffold supports tissue regeneration while limiting systemic exposure to VEGF, suppressing platelet binding and inflammation while promoting reendothelialization. These mimetics can potentially prevent rapid collagen matrix degradation and accelerate ischemic wound healing while preventing long-term complications including thrombosis, scaring and a foreign body response. removing the need for stents.

Applications

  • Tissue regeneration
  • Atherosclerotic conditions
  • Enhanced wound healing and vascular repair

Features/Benefits

  • Pro-angiogenic scaffold
  • Accelerates ischemic wound healing
  • Prevents rapid collagen matrix degradation
  • Limits systematic exposure to VEGF
  • Can be delivered via catheter post balloon angioplasty

Patent Status

Country Type Number Dated Case
United States Of America Issued Patent 11,612,663 03/28/2023 2018-492
United States Of America Published Application 20230346960 11/02/2023 2018-492
 

Contact

Learn About UC TechAlerts - Save Searches and receive new technology matches

Inventors

  • Lam, Kit S.
  • Liu, Ruiwu
  • Wang, Aijun

Other Information

Keywords

collagen-binding, integrin-binding, peptidoglycans, proteoglycan mimetics, matrix metalloproteases, MMPs, restenosis, stent, drug-eluting stents, DES, pro-angiogenic scaffold, tissue regeneration, VEGF, reendothelialization, endothelial cell, endothelial progenitor, cell capture, collagen matrix degradation, wound healing, ischemic

Categorized As