Available Technologies

Find technologies available for licensing from all ten University of California (UC) campuses.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

High Yield Co-Conversion of Lignocellulosic Biomass Intermediates to Methylated Furans

Prof. Charles Cai and colleagues from the University of California, Riverside have developed a method for high yield co-conversion of lignocellulosic biomass to produce high octane fuel additives dimethyl furan (DMF) and methyl furans (MF). This technology works by using Cu-Ni/TiO2, a unique catalytic material that enables high yield (~90%) conversion of 5-(hydroxymethyl)furfural (HMF) and furfural (FF) sourced from lignocellulosic biomass into methylated furans (MF) in either single or co-processing schemes. This invention is advantageous compared to existing technologies due to its high yield and efficiency, low cost, and stable conversion process.   Fig 1: UCR’s furfural conversion and product yields as function of reaction time over Cu-Ni/TiO2.  

  • Go to Page: