Available Technologies

Find technologies available for licensing from UCLA.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Flexible And Stretchable Interconnects For Flexible Systems And Flextrate(Tm)

Researchers led by Professor Subramanian Iyer from the Department of Electrical Engineering at UCLA have developed a novel fabrication technique to create stretchable electronics.

High Performance Thin Films from Solution Processible Two-Dimensional Nanoplates

UCLA researchers in the departments of Chemistry and Materials Science have recently developed a novel material for use in flexible, printed electronics.

A Wearable Freestanding Electrochemical Sensing System

Researchers in the UCLA Department of Electrical and Computer Engineering have developed a strategy for high-fidelity, wearable biomarker data acquisition and sensor integration with consumer electronics.

High Thermal Conductivity Boron Arsenide For Thermal Management, Electronics, And Photonics Applications

UCLA researchers in the Department of Mechanical & Aerospace Engineering have developed a novel boron arsenide (BAs) material that has an ultra-high thermal conductivity of 1300 W/mK and low cost of synthesis and processing.

Diamond On Nanopatterned Substrates

UCLA researchers in the Department of Materials Science and Engineering have developed a nanofabrication method for improving the thermal properties of polycrystalline diamond films grown by chemical vapor deposition.

Flexible Nanotube Transistors

Professor Grüner and colleagues have developed films of nanostructures that can be integrated into flexible semiconducting substrates. This technology has applications in flexible displays, wearable electronics, intelligent paper, and other lightweight, low-cost electronics. 

Photo-induced Metal Printing Technique for Creating Metal Patterns and Structures Under Room Temperature

UCLA researchers in the Department of Materials Science and Engineering have developed a low-temperature metal patterning technique.

Concentration Of Nanoparticles By Zone Heating Method

UCLA researchers in the Department of Mechanical and Aerospace Engineering have invented a novel method to concentrate nanoparticles (NPs) into metal crystals via zone melting.

Multiple-Patterning Nanosphere Lithography

Researchers led by Paul Weiss from the Department of Chemistry and Biochemistry at UCLA have developed a novel technique that solves the scalability issue in the fabrication of three-dimensional nanostructures.

Two-Step Processing With Vapor Treatment Of Thin Films Of Organic-Inorganic Perovskite Materials

Prof. Yang and colleagues have developed a novel method of preparing organic-inorganic thin films using a solution process followed by vapor treatment, presenting a low-cost, high-performance solution method of producing optoelectronic devices.

Nanowire-Polymer Composite Electrodes

Researchers at UCLA have developed a simple procedure to fabricate highly flexible silver nanowire (AgNW) electrodes on transparent polymer substrates demonstrating optimum electric properties, shape memory, and providing an alternative to the costly and brittle indium-doped tin oxide (ITO) electrodes

A Highly-Efficient Near-Field Wireless Power Transfer System That Is Immune To Distance And/Or Coupling-Coefficient Variations

UCLA researchers in the Department of Electrical Engineering have developed a novel design for a wireless power transfer system. This new design is optimized to function stably over a greater and variable distance than current systems and to function with a higher efficiency.

Intelligent Flexible Spinal Cord Stimulators For Pain And Trauma Management Through Neuromodulation

UCLA researchers in the Department of Neurosurgery and Electrical Engineering have developed a novel closed-loop spinal cord stimulator device that is small and flexible.

Evaporation-Based Method For Manufacturing And Recycling Of Metal Matrix Nanocomposites

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a new method to manufacture and recycle metal matrix nanocomposites.

Tunable Thz Generation In Chip-Scale Graphene

UCLA researchers in the Department of Electrical Engineering have developed a novel tunable and efficient terahertz (THz) plasmon generation on-chip via graphene monolayers.

Efficient and Stable Perovskite Solar Cells with All Solution Processed Metal Oxide Transporting Layers

UCLA researchers in the Department of Materials Science and Engineering have developed a novel lead halide perovskite solar cell with a metal oxide charge transport layer.

Voltage-Responsive Coating for Lithium-Sulfur Battery

Researchers in the UCLA Department of Chemical and Biomolecular Engineering have developed a lithium-sulfur battery that overcomes the poor recharging and short lifespan problems common among other lithium-sulfur battery configurations.

Cleaning Lithium to Improve Protective Layer

Professor Dunn and colleagues have developed a method to improve the homogeneity of a protective layer placed upon a lithium metal surface. By removing surface impurities from the lithium and applying a uniform protective layer, a more homogenous current distribution can be maintained across the electrode and dendrite formation can be suppressed. 

Materials for Autonomous Tracking, Guiding, Modulating, and Harvesting of Energetic Emissions

UCLA researchers in the Department of Materials Science and Engineering have developed a novel photo-responsive polymer that can real-time detect, track, modulate, and harvest incident optical signals and a broad range of energetic emissions at high accuracy and fast response rate.

High Performance and Flexible Chemical And Bio Sensors Using Metal Oxide Semiconductors

UCLA researchers in the Department of Materials Science and Engineering have developed a simple method producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing for future wearable human technologies as well as non-invasive glucose testing.

Synthesis Of Graphene Nanoribbons From Monomeric Molecular Precursors Bearing Reactive Alkyne Units

Researchers in the Department of Chemistry and Biochemistry have developed a novel graphene nanoribbon synthesis, which have numerous applications in electronic devices.

Self-Latching Piezocomposite Actuator

Brief description not available

Selective Chemical Bath Deposition of IrOx on Thin Film Structure

UCLA researchers in the Department of Bioengineering have developed a selective chemical bath deposition method to create IrOx thin films.

  • Go to Page: