Please login to create your UC TechAlerts.
Request a new password for
Required
Find technologies available for licensing from all ten University of California (UC) campuses.
No technologies match these criteria. Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above
Multiplexed Entangled Photon Generator Based On Integrated Photonic Microresonator Array
Brief description not available
Laser-Induced Confocal Microscope for Dielectrophoretic Fluorescence-Activated Droplet Sorting
A system that enhances and accelerates enzyme evolution process for synthetic biology applications using microfluidic technology and fluorescent sensors.
Enhancing iPSC Reprogramming Efficiency
A revolutionary method for improving the efficiency and quality of reprogramming adult cells into stem cells or other therapeutically relevant cell types via adhesome gene manipulation.
Hybrid Force Radiometric Array with Direct Analog Force-to-RF Conversion
This technology introduces a novel approach for bridging force sensing with wireless communication through direct analog force-to-RF conversion provides lower power consumption and lower costs.
Non-Invasive Cervical Dilation Monitoring
An innovative ultrasound-based device designed to measure cervical dilation and potentially monitor fetal conditions more accurately and less invasively during labor.
Lipid Nanoparticles Mediated Delivery Of RNA Therapeutics to Trabecular Meshwork
This technology represents a groundbreaking approach to treating Primary Open Angle Glaucoma by directly targeting the trabecular meshwork pathology with lipid nanoparticle-mediated delivery of gene editing tools or anti-sense oligos.
Methods For Selectively Disabling Oncogenes
Most tumors are extremely complex, having many oncogene drivers and are, therefore, not as amenable to a CRISPR-mediated therapies. Pediatric low-grade glioma (pLGG) is a type of brain cancer that arises during childhood. Some interventions exist, including surgery and inhibitor drugs, but there is no cure for pLGG. In contrast to most types of cancer (which feature a host of driver oncogenes), pLGG tumors tend to arise due to a single driver oncogene mutation. This aspect makes pLGG a potential target for a genome editing intervention. Because CRISPR enzymes can precisely discriminate between wild-type and mutant sequences in a single cell, enzymes such as Cas9 can target a mutant oncogene site without impacting the corresponding wild-type locus in a non-cancer cell. UC Berkeley researchers have developed a CRISPR-based strategies for anti-cancer genome editing. The invention consists of a suite of genome editing strategies with the capacity to selectively inactivate the oncogene underlying tumor pathology, for example, mutations in pLGG. Deployed via a delivery strategy with the capacity for broad genome editing of brain cells, our strategy will have the capacity to halt – and potentially reverse – tumor growth.
Platooning System and Methods
Vehicle platooning technology is an evolving segment within the broader movement towards more intelligent transportation, specifically relating to autonomous vehicles. Some early concepts dates back to the 1970s with projects like Electronic Route Guidance System developed by the U.S. Federal Highway Administration, which used a destination-oriented approach with roadside units to decode vehicle inputs and provide routing instructions. Subsequent initiatives such as the California Partners for Advanced Transportation Technology program demonstrated vehicles traveling in close formation guided by magnets embedded in roadways. The landscape has since evolved from individual vehicle automation concepts to more sophisticated vehicle-to-vehicle (V2V) communication schemes to enable coordinated movements. More recent industry developments have been driven by advancements in 5G technology, V2V communication protocols, and enhanced safety requirements. Current systems face control stability challenges, particularly as platoon size increases, with research showing that system stabilizability degrades and can lose stability entirely in infinite vehicle formations. Moreover, issues with V2V communication reliability persist, including frequent intermittent connectivity problems and wireless interference, limiting wider adoption. Additional challenges include the fundamental trade-off between fuel efficiency and safety margins, where shorter inter-vehicle distances improve aerodynamic benefits but increase collision risk.