Browse Category: Medical > Research Tools

[Search within category]

Methods and Systems for Rapid Antimicrobial Susceptibility Tests

Rapid antimicrobial susceptibility testing (AST) is a method for quickly determining the most effective antibiotic therapy for patients with bacterial infections. These techniques enable the detection and quantification of antibiotic-resistant and susceptible bacteria metabolites at concentrations near or below ng/mL in complex media. Employing bacterial metabolites as a sensing platform, the system integrates machine learning data analysis processes to differentiate between antibiotic susceptibility and resistance in clinical infections within an hour. With the results, a clinician can prescribe appropriate medicine for the patient's bacterial infection.

Robotic Integrated Raman Scanning Optical Head

Researchers at the University of California, Davis have developed an invention that utilizes an integrated Raman scanning head and machine vision for high throughput chemical analysis of liquid biopsy samples.

(SD2018-372): A Protocol To Induce Human Spinal Cord Neural Stem Cells (US Pat No. 11,773,369)

Worldwide, over 2.5 million people live with spinal cord injury, with over 100,000 new cases occurring annually. Spinal cord injury often causes motor dysfunction below the level of the injury. For example, thoracic and lumbar spinal cord injury can cause paraplegia and cervical spinal cord injury can cause quadriplegia. Such injury is permanent and often severe and there is no effective treatment. Various neurologic diseases also involve damaged or dysfunctional spinal cord neurons. Neural stem cell grafts have potential for treating such conditions. However, it has not been possible to obtain sufficient numbers of appropriately patterned neural stem cells, having a spinal cord positional identity, for implanted cells to survive and functionally engraft.

Methods and Computational System for Genetic Identification and Relatedness Detection

Deoxyribonucleic acid- (DNA-) based identification in forensics is typically accomplished via genotyping allele length at a defined set of short tandem repeat (STR) loci via polymerase chain reaction (PCR). These PCR assays are robust, reliable, and inexpensive. Given the multiallelic nature of each of these loci, a small panel of STR markers can provide suitable discriminatory power for personal identification. Massively parallel sequencing (MPS) technologies and genotype array technologies invite new approaches for DNA-based identification. Application of these technologies has provided catalogs of global human genetic variation at single-nucleotide polymorphic (SNP) sites and short insertion-deletion (INDEL) sites. For example, from the 1000 Genomes Project, there is now a catalog of nearly all human SNP and INDEL variation down to 1% worldwide frequency. Genotype files, generated via MPS or genotype array, can be compared between individuals to find regions that are co-inherited or identical-by-descent (IBD). These comparisons are the basis of the relative finder functions in many direct-to-consumer genetic testing products. A special case of relative-finding is self-identification. This is a trivial comparison of genotype files as self-comparisons will be identical across all sites, minus the error rate of the assay. For many forensic samples, however, the available DNA may not be suitable for PCR-based STR amplification, genotype array analysis, or MPS to the depth required for comprehensive, accurate genotype calling. In the case of PCR, one of the most common failure modes occurs when DNA is too fragmented for amplification. For these samples, it may be possible to directly observe the degree of DNA fragmentation from the decreased amplification efficiency of larger STR amplicons from a multiplex STR amplification. In the case of severely fragmented samples, where all DNA fragments are shorter than the shortest STR amplicon length, PCR simply fails with no product.

Droplet microvortices for modulating cell dynamics

The invention presents a microfluidic platform equipped with specialized trapping arrays and droplet generation capabilities, enabling precise control over the formation of microvortices within cell-laden droplets. This novel system facilitates the study of cell-cell interactions at a single-cell level, offering configurable microenvironments for analyzing cell dynamics and pair relationships.

Fully Automated Multi-Organ Segmentation From Medical Imaging

A comprehensive method for automated multi-organ segmentation based on deep fully convolutional networks and adversarial training, achieving superior results compared to existing techniques.

New Cross-Linking Mass Spectrometry Platform: SDASO-L, SDASO-M, and SDASO-S

An innovative mass spectrometry platform that utilizes sulfoxide-containing MS-cleavable heterobifunctional photoactivated cross-linkers to enhance protein structural elucidation.

Affordable and Convenient Neurosurgical Simulator

A cost-effective neurosurgical simulator designed to give neurosurgical residents and medical students a platform to practice and enhance their operative skills.

Imaging of cellular immune response in human skin

This patent application describes methods for non-invasive, label-free imaging of the cellular immune response in human skin using a nonlinear optical imaging system.

High throughput and precision cell sorting

A novel method and device for high-throughput sorting of cells in suspension, particularly focusing on the separation of key cellular blood components of the immune system. The patent application presents a novel approach to high-throughput cell sorting, particularly suitable for applications in medicine and biotechnology where precise separation of cell populations is crucial.

Quantifying optical properties of skin

The disclosed methods offer a robust approach to accurately quantify skin optical properties across different skin tones, facilitating improved diagnosis, monitoring, and treatment in dermatology.

MYC-Targeting Inhibitors Generated From A New Method To Synthesize Stereo-Diversified Bicyclic Libraries

Professor Min Xue and colleagues from the University of California, Riverside have developed a new method of construction of a bicyclic peptide library featuring a novel stereo-diversified structure and a simplified construction strategy.  MYC inhibitors were synthesized to demonstrate this method. The method works by using a tandem ring-opening metathesis (ROM) and ring-closing metathesis (RCM) reaction (ROM-RCM) to cyclize the linear peptide library in a single step. This technology is advantageous because the resulting bicyclic peptide may be easily linearized for MS/MS sequencing with a one-step chemistry procedure. 

Precision 3D Modeling Technology

An innovative technology that uses a device to move any imaging device precisely through a path in 3D space, enabling the generation of high-resolution 3D models.

Artificial Intelligence-Based Evaluation Of Drug Efficacy

Researchers at the University of California, Davis have developed a method of using artificial intelligence for assessing the effectiveness or efficacy of drugs that is cheaper, faster, and more accurate than commonly used assay analyses.

(SD2022-275) Methods and compositions governing the use of proteins and protein domains that enhance exon inclusion

The strategy employed by the invention is inspired by splicing factors, a category of RNA-binding protein that influence alternative splicing outcomes. These splicing factors are trans-acting, and act to enhance or silence exon inclusion by binding near or on the target exon and promoting or repressing the activity of splicing machinery. Scientifically, a highly programmable, minimally disruptive system to increase exon inclusion could allow for higher-throughput identification of functional roles of specific exons than have been previously shown.

(SD2022-177 ) Flexible, insertable and transparent microelectrode array to detect interactions between different brain regions

Researchers from UC San Diego's Neuroelectronics Lab invented an implantable brain electrode technology which allows recording interactions between different cortex regions or interactions of cortex with other subcortical structures. The technology is called Neuro‐FITM. Flexibility and transparency of Neuro‐ FITM allow integration of electrophysiological recordings with any optical imaging (such as high resolution multiphoton imaging) or stimulation technology (such as optogenetics).

Daily Move© - Infant Body Position Classification

Prof. John Franchak and his team have developed a prototype system that accurately classifies an infant's body position.

(SD2022-066) Simultaneous assessment of afferent and efferent visual pathways using multi‐focal steady‐state visual evoked potenital method to facilitate the diagnosis and prognosis of individuals with neurological diseases.

Researchers from UC San Diego have developed a patent-pending wearable device for concurrently assessing afferent and efferent visual functions. The invention details novel mobile brain-computer interfacing methods and systems for concurrently assessing afferent and efferent visual functions.

(SD2024-136) A Gravitationally Resilient Automated Molecular Biology Platform

A patent-pending platform technology designed to work in any gravity, which includes in microgravity environments, able to execute advanced molecular biology workflows; representing a paradigm shift in automation for molecular biology.

Plasmid Materials

Various plasmids from Michael Rape's lab, including but not limited to:pQE-UbcH5c/pET-Ube2D3-6xHispET28-E2NpET28-UEV1ApET28a-UBE2S-6xHISpET28a-E2R1-6xHIS 

Ubiquitin Materials

Various ubiquitin plasmids from Michael Rape lab, including but not limited to: pCS2-no his-ubiquitin wtpCS2-no his-ubiquitin all RpET30a-ubiquitin (no tag)pET30a-ubiquitin K0 (no tag) 

Methods To Dysfluent Speech Transcription And Detection

Dysfluent speech modeling requires time-accurate and silence-aware transcription at both the word-level and phonetic-level. However, current research in dysfluency modeling primarily focuses on either transcription or detection, and the performance of each aspect remains limited.To address this problem, UC Berkeley researchers have developed a new unconstrained dysfluency modeling (UDM) approach that addresses both transcription and detection in an automatic and hierarchical manner. Furthermore, a simulated dysfluent dataset called VCTK++ enhances the capabilities of UDM in phonetic transcription. The effectiveness and robustness of UDM in both transcription and detection tasks has been demonstrated experimentally.UDM eliminates the need for extensive manual annotation by providing a comprehensive solution.

Constructs, Plasmids And Specialized Reagents For E3 Ligase Project

Various plasmid constructs and cell lines for E3 Ligase project from Julia Schaletzky lab, including but not limited to:  pET28-ubiquitin wtpET28-ubiquitin deltaGGpLentiX1hygropLentiX1 blastpLentiX1 puropLentiX1 neopCS2-6xHIS-Htt-73QpCS2-6xHIS-Htt-23QpInducer Htt-23Q-GFPpInducer Htt-73Q-GFP

METHODS OF PRODUCING AND USING AVIAN EMBRYONIC STEM CELLS AND AVIAN TELENCEPHALIC ORGANOIDS

Stem cells have the potential to develop into different types of cells. They are key to an organism’s development. Producing stem cell lines are important for research. Currently, avian embryonic stems cells are cultured on a layer of feeder cells. Feeder cells ensure that the stem cells survive and do not differentiate into other types of cells. However, using feeder cells can be costly and inconvenient.

(SD2018-040) High Yield Fabrication of Sharp Vertically Aligned Nanowire Arrays for Intracellular Recordings and Applications Thereof

Engineers from UC San Diego have disclosed a new patent-pending technology (SHARP, VERTICALLY ALIGNED NANOWIRE ELECTRODE ARRAYS, HIGH-YIELD FABRICATION ANDINTRACELLULAR RECORDING) that minimizes the electrode size to an intracellular probe, and is scalable to integrate multiple channels at one platform and overcomes the previous disadvantages such as invasiveness and insensitivity. This newly disclosed improved technology reduces the number of steps and the number of metal layers used to increase the biocompatibility and device yield, as compared to an earlier disclosure for NEAs that were fabricated using a different process.

  • Go to Page: