Browse Category: Materials & Chemicals > Other

[Search within category]

Training Swimwear Garment to Address Injury Risk Factors

Researchers at the University of California, Davis (“UC Davis”) have developed a unisex swimwear garment designed to prevent swimming-related injuries and to assist in injury recovery during training.

Surfaces Incorporating Treated Leaves for Chemical-free Physical Capture of Pest Arthropods

A breakthrough technology utilizing chemically treated leaves which retain their insect-entrapping properties, providing an effective and less expensive solution for pest control without the use of chemical insecticides.

Electrically Fueled Active Supramolecular Materials

Invention of a new platform for creating active supramolecular materials using electrical energy as the fuel.

Legionaminic Acid Glycosyltransferases for Chemoenzymatic Synthesis of Glycans and Glycoconjugates

Researchers at the University of California, Davis have developed a method for preparing a glycan product containing a nonulosonic acid moiety by means of legionaminic acid transferase fusion proteins

Additive Manufacturing (3-D Printing) Of Standardized 5xxx Series Aluminum

A technology utilizing additive manufacturing (3D-Printing) processes and systems for efficient deposition of standardized aluminum 5xxx series, mitigating defects such as cracks and pores.

Enhancing Light-Matter Interactions In Mos2 By Copper Intercalation

Researchers at the University of California, Davis have developed layered 2D MoS2 nanostructures that have their light-interactive properties improved by intercalation with transition and post-transition metal atoms, specifically Copper and Tin.

Tungsten and Molybdenum Alkylidene Catalysts for Olefin Metathesis

 Professors Richard Schrock and Matthew Conley from the University of California, Riverside have developed new W and Mo based alkylidene olefin metathesis catalysts that can be produced by activation of metathesis-inactive precursors, accessible from metal chloride precursors via as few as three synthetic steps, using visible light. 𝛃,𝛃'disubstituted tungsten cyclopentane complexes can be prepared in the dark and form alkylidenes through irradiation. This technology is advantageous because it can potentially regenerate used catalysts by irradiation with visible light, offering a sustainable and cost-effective approach for industrial and research applications.  Fig 1: Synthetic scheme of alkylidenes from tungstacyclopentane complexes upon exposure to violet or blue light (405-445 nm).  A number of tungstacyclopentanes have been prepared from W(NR)OR’)2Cl2 complexes through alkylation and reduction with diethylzinc in the presence of an olefin.   

Microbial Production Of Antimicrobial Rhammolipid Esters

Rhamnolipids (RLs) are a class of bacterially produced biosurfactants that possess antimicrobial as well as surface-active properties. While RLs have broad utility in industry as antimicrobial biosurfactants, their anionic nature limits the efficacy of these molecules in certain applications. Alternatively, rhamnolipid esters (RLEs) exhibit improved properties as nonionic surfactants. However, a major challenge in RLE application in the commercial arena is that, to date, they are only reliably accessed via chemical synthesis, a costly and unsustainable approach.To address this problem, UC Berkeley researchers have developed a novel, reliable microbial source for biosynthesized RLEs enabling their production in an efficient, sustainable, and renewable manner. Additionally, three novel rhamnolipid methyl ester (RLME) congeners have been produced and a new enzyme for RLE production identified. The produced RLEs are expected to be more effective than RLs in many ways, including antifungal activity and hydrocarbon solubilization.

Continuous Polyhydroxyalkanoate Production By Perchlorate Respiring Microorganisms

Plastics are essential for the modern world but are also non-sustainable products of the petrochemical industry that negatively impact our health, environment, and food chain. Natural biogenic plastics, such as polyhydroxyalkanoates (PHA), are readily biodegradable, can be produced more sustainably, and offer an attractive alternative. The global demand for bioplastics is increasing with the 2019 market value of $8.3B expected to reach a compound annual growth rate of 16.1% from 2020-2027 (https://www.grandviewresearch.com/industry-analysis/bioplastics-industry). However, current PHA production is constrained by the underlying physiology of the microorganisms which produce them, meaning bioplastic production is currently limited to inefficient, batch fermentation processes that are difficult to scale.To address this problem, UC Berkeley researchers have developed a new system for PHA production wherein the PHA are generated continuously throughout microorganism growth lifecycles. The invention allows these sustainable bioplastics to be produced via precision continuous fermentation technology, a scalable and efficient approach.

Polysaccharide A-Based Particulate Systems For Attenuation Of Autoimmunity, Allergy and Transplant Rejection

Researchers at the University of California, Davis have developed a customizable polysaccharide that can be added to nanoparticles to reduce their rejection by the human immune system.

Scalable Temperature Adaptive Radiative Coating With Optimized Solar Absorption

For decades, researchers have been developing “cool roof” materials to cool buildings and save on energy usage from air conditioning. Cool roof materials are engineered to maximize infrared thermal emission, allowing heat to be effectively radiated into outer space and the building to cool down. Conventional cool roof materials emit heat even when it is cold outside, which exacerbates space heating costs and can outweigh energy-saving benefits. A temperature adaptive radiative coating (TARC) material was developed in 2021 that adapts its thermal emittance to ambient temperatures using metal-insulator transitions in vanadium oxide. TARC is projected to outperform existing roof materials in most climate areas, but the complicated structure required high-cost fabrication techniques such as photolithography, pulsed laser deposition, and XeF2 etching, which are not scalable.To address this problem, UC Berkeley researchers have developed a new scalable temperature-adaptive radiative coating (STARC). STARC has the same thermal emittance switching capability as TARC, allowing the thermal emittance to be switched between high- and low- emittance states at a preset temperature. However, STARC can be produced using high-throughput, roll-to-roll methods and low-cost materials. The STARC material also has an improved lifetime. As an added benefit, while cool roof materials are often engineered with uniformly low solar-absorption, the color and solar absorption of STARC can be tuned for aesthetic purposes or to meet local climate-specific needs.

Heterogeneous Ruthenium Catalysts for Olefin Metathesis

Professor Matthew Conley from the University of California, Riverside has developed heterogeneous ruthenium catalysts for olefin metathesis. These catalysts have higher activity than state-of-the-art homogeneous catalysts in metathesis of terminal olefins.  They are combined with state-of-the-art anion capped materials that anchor positively charged Grubbs catalyst to the surface to form active heterogeneous olefin metathesis catalyst. This technology has the potential to produce heterogeneous catalysts that are less expensive, more efficient, and faster than the available homogenous ruthenium catalysts for olefin metathesis. Fig 1: Chemical structure of UCR’s heterogneous Grubb’s catalyst supported on functionalized silica for olefin metathesis.  

Camellia Sinesis Rapid Growth Platform

Researchers at the University of California Davis have developed a rapid growth platform that aims to decrease crop production time, allow for tunable sensory attributes, and decrease carbon emissions.

Non-Planar Granular 3D Printing

The inventors have developed a novel 3D printing technique, named Non-Planar Granular 3D Printing (NGP), which selectively deposits a liquid binder into granular particles, enabling rapid fabrication of complex 3-dimensional objects. For this new method, an industrial robotic arm is equipped with a dispenser attached to a long metal needle, called a liquid deposition end-effector, and a container of granular particles, such as sand, beads, or powders. The needle moves freely as it injects the binding liquid into the granular material. Like other 3D printing methods, NGP can use a CAD 3D model and conventional slicing software to produce a robotic toolpath following a desired height and width. However, the advantage of the process lies in its ability to 3D print objects non-planarly, by moving the extruder’s dispensing tip freely within the granular medium. The selective application of the binding liquid causes the particles to bond together, forming parts of the 3D printed object. Meanwhile, the loose particles remaining in the container temporarily support the weight of the wet particles while they cure. This unique approach enables the creation of complex geometric forms without the need for supporting structures that are typical in traditional 3D printing methods, thereby eliminating material waste typically associated with such processes. After the completion of the process, and the binding material has cured, the hard objects can be easily extracted from the container, leaving behind the remaining loose particles, which can be repeatedly re-used.   

Non-melting, Sustainable, Reusable, Plastic-Free and Biodegradable Food Coolant Cubes

Researchers at the University of California, Davis, have developed a nature-based, plastic-free, non-melting, reusable, sustainable, self-cleanable (anti-fungal), and biodegradable robust cooling system for the applications in cold chains. The system has comparable cooling efficiency to traditional ice and drastically reduces water consumption, prevents potential microbial cross-contamination caused by melt-water, and eliminates the use of plastic and other synthetic materials.

Minimally Invasive Percutaneous Delivery System for a Whole-Heart Assist Device

Researchers at UCI have developed a minimally invasive mechanism to help deliver and implant a cardiac assist device inside the body to help patients with heart failure.

Laser additive manufacturing method for producing porous layers

The inventors at UCI have created a method of doping layered cathode materials in sodium-ion batteries. In this method more than five impurity elements are introduced into a host material, in this case a sodium-based layered cathode material, Na0.667Mn0.666Ni0.167Co0.167O2. This technique is being utilized in order to create sodium-ion batteries that are more competitive with the historically used lithium-ion battery.

Stable N-acetylated analogs of Sialic Acids and Sialosides

Researchers at the University of California, Davis have constructed a library of glycans containing N-acetyl sialic acids to mimic those containing naturally occurring O-acetyl sialic acids.

Method For Rapid In Situ Detection Of Ammonia

This invention, a simple and robust method for ammonia detection, offers high-speed in situ quantification of ammonia concentrations with high sensitivity. The ammonia detection system does not require complex instrumentation, analysis, or labeling, which would allow for widespread adoption in chemistry-based fields and surrounding disciplines.

Group 13 Metals as Anolytes in Non-Aqueous, Redox Flow Batteries

Researchers at the University of California, Davis have identified earth abundant and other relatively inexpensive materials that form the basis of novel molecules (anolytes), with long lifecycles and high energy densities, to be used in redox flow batteries.

High Fidelity 3D Printing Through Computed Axial Lithography

The inventor has developed novel algorithms and metrology methodologies, including real-time in-situ imaging of part formation, in computed axial lithography printing (CALP). CALP is a form of continuous 3D roll-based additive manufacturing which is distinct from roll-based micro/nanomanufacturing methods such as imprint lithography, gravure printing, and photo-roll lithography because it enables production of high aspect ratio reentrant features and voids in a single step that are difficult or even impossible with the existing methods.

Automated Tip Conditioning ML-Based Software For Scanning Tunneling Spectroscopy

Scanning tunneling microscopy (STM) techniques and associated spectroscopic (STS) methods, such as dI/dV point spectroscopy, have been widely used to measure electronic structures and local density of states of molecules and materials with unprecedented spatial and energy resolutions. However, the quality of dI/dV spectra highly depends on the shape of the probe tips, and atomically sharp tips with well-defined apex structures are required for obtaining reliable spectra. In most cases, STS measurements are performed in ultra-high vacuum  and low temperature (4 K) to minimize disturbances. Advance tip preparation and constant in situ tip conditioning are required before and during the characterization of target molecules and materials. A common way to prepare STM tips is to repetitively poke them on known and bare substrates (i.e. coinage metals or silicon) to remove contaminations and to potentially coat the tip with substrate atoms. The standard dI/dV spectra of the substrate is then used as a reference to determine whether the tip is available for further experiments. However, tip geometry changes during the poking process are unpredictable, and consequently tip conditioning is typically slow and needs to be constantly monitored. Therefore, it restricts the speed of high-quality STM spectroscopic studies. In order to make efficient use of instrument idle time and minimize the research time wasted on tip conditioning, UC Berkeley researchers developed software based on Python and machine learning that can automate the time-consuming tip conditioning processes. The program is designed to do tip conditioning on Au(111) surfaces that are clean or with low molecular coverage with little human intervention. By just one click, the program is capable of continued poking until the tip can generate near-publication quality spectroscopic data on gold surfaces. It can control the operation of a Scienta Omicron STM and automatically analyze the collected topographic images to find bare Au areas that are large enough for tip conditioning. It will then collect dI/dV spectra at selected positions and use machine learning models to determine their quality compared to standard dI/dV spectra for Au20 and determine if the tip is good enough for further STS measurements. If the tip condition is not ideal, the program will control the STM to poke at the identified positions until the machine learning model predicts the tip to be in good condition.

  • Go to Page: