Please login to create your UC TechAlerts.
Request a new password for
Required
Find technologies available for licensing from all ten University of California (UC) campuses.
No technologies match these criteria. Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above
Almond Activated Geopolymer Cement
Researchers at the University of California, Davis have developed a sustainable alternative to Portland cement by utilizing alkali-activated binders (AAB) with biomass ash, significantly reducing greenhouse gas emissions.
Selective Manipulation of Magnetically Barcoded Materials
This technology enables precise, selective manipulation of magnetically barcoded materials, distinguishing them from background magnetic materials
Novel AMPK Inhibitors and Activators
Professor Kevin Kou and colleagues from the University of California, Riverside and the City of Hope National Medical Center have developed a chemical synthetic strategy that allows for the efficient generation of a diverse library of oxyberberine derivatives. This technology is advantageous because the family of protoberberine molecules, the best known being berberine, is generally considered non-toxic. As such, protoberberine derivatives are likely to elicit a better safety profile compared to existing AMPK inhibitors that are highly toxic and be developed to treat a range of diseases. Fig 1: Four of the UCR novel AMPK inhibitors resulting from the UCR synthesis strategy.
MicroRNA to Treat Traumatic Brain Injury
Researchers at the University of California, Davis has developed a microRNA-based treatment for traumatic brain injury.
Permeable Micro-Lace Electrodes For Electrodermal Activity
Electrodermal activity (EDA) has traditionally been used for monitoring mental activity by measuring skin conductance (SkinG) at locations with high sweat gland density. However, EDA has not been considered useful for physical activity due to baseline shifts caused by sweat accumulation at the skin/electrode interface.
A Novel Method for RF Field Programming and Intelligent Surface Design Using Diffraction-Inducing Elements
Brief description not available
Real-Time Antibody Therapeutics Monitoring On An Implantable Living Pharmacy
Biologics are antibodies produced by genetically engineered cells and are widely used in therapeutic applications. Examples include pembrolizumab (Keytruda) and atezolizumab (Tecentriq), both employed in cancer immunotherapy as checkpoint inhibitors to restore T- cell immune responses against tumor cells. These biologics are produced by engineered cells in bioreactors in a process that is highly sensitive to the bioreactor environment, making it essential to integrate process analytical technologies (PAT) for closed-loop, real-time adjustments. Recent trends have focused on leveraging integrated circuit (IC) solutions for system miniaturization and enhanced functionality, for example enabling a single IC that monitors O2, pH, oxidation-reduction potential (ORP), temperature, and glucose levels. However, no current technology can directly and continuously quantify the concentration and quality of the produced biologics in real-time within the bioreactor. Such critical measurements still rely on off-line methods such as immunoassays and mass spectrometry, which are time-consuming and not suitable for real- time process control. UC Berkeley researchers have developed a microsystem for real-time, in-vivo monitoring of antibody therapeutics using structure-switching aptamers by employing an integrator-based readout front-end. This approach effectively addresses the challenge of a 100× reduction in signal levels compared to the measurement of small-molecule drugs in prior works. The microsystem is also uniquely suited to the emerging paradigm of “living pharmacies.” In living pharmacies, drug-producing cells will be hosted on implantable devices, and real-time monitoring of drug production/diffusion rates based on an individual’s pharmokinetics will be crucial.
Subtractive Microfluidics in CMOS
Integrating microelectronics with microfluidics, especially those implemented in silicon-based CMOS technology, has driven the next generation of in vitro diagnostics. CMOS/microfluidics platforms offer (1) close interfaces between electronics and biological samples, and (2) tight integration of readout circuits with multi-channel microfluidics, both of which are crucial factors in achieving enhanced sensitivity and detection throughput. Conventionally bulky benchtop instruments are now being transformed into millimeter-sized form factors at low cost, making the deployment for Point-of-Care (PoC) applications feasible. However, conventional CMOS/microfluidics integration suffers from significant misalignment between the microfluidics and the sensing transducers on the chip, especially when the transducer sizes are reduced or the microfluidic channel width shrinks, due to limitations of current fabrication methods. UC Berkeley researchers have developed a novel methodology for fabricating microfluidics platforms closely embedded within a silicon chip implemented in CMOS technology. The process utilizes a one-step approach to create fluidic channels directly within the CMOS technology and avoids the previously cited misalignment. Three types of structures are presented in a TSMC 180-nm CMOS chip: (1) passive microfluidics in the form of a micro-mixer and a 1:64 splitter, (2) fluidic channels with embedded ion-sensitive field-effect transistors (ISFETs) and Hall sensors, and (3) integrated on-chip impedance-sensing readout circuits including voltage drivers and a fully differential transimpedance amplifier (TIA). Sensors and transistors are functional pre- and post-etching with minimal changes in performance. Tight integration of fluidics and electronics is achieved, paving the way for future small-size, high-throughput lab-on-chip (LOC) devices.