Available Technologies

Find technologies available for licensing from UC Davis.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

A Combined Raman/Single-Molecule Junction System For Chemical/Biological Analysis

Researchers at the University of California, Davis have developed a device for multi-dimensional data extraction at the molecular level to allow one to simultaneously detect the presence of a single-molecule electrically, and to extract a chemical fingerprint to identify that molecule optically.

Affinity Peptides for Diagnosis and Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 and Zika Virus Infections

Researchers at the University of California, Davis have developed a technology to expedite COVID-19 diagnosis and treatment using viral spike protein (S-protein) targeted peptides Zika virus envelop protein.

Enhancing Light-Matter Interactions In Mos2 By Copper Intercalation

Researchers at the University of California, Davis have developed layered 2D MoS2 nanostructures that have their light-interactive properties improved by intercalation with transition and post-transition metal atoms, specifically Copper and Tin.

Mitochondria Targeting Photosensitizer for Photodynamic Therapy

Researchers at the University of California, Davis have developed a self-assembling, fibrous photosensitizer that targets mitochondria in tumor cells for destruction via photodynamic therapy with enhanced localization and potency.

Polysaccharide A-Based Particulate Systems For Attenuation Of Autoimmunity, Allergy and Transplant Rejection

Researchers at the University of California, Davis have developed a customizable polysaccharide that can be added to nanoparticles to reduce their rejection by the human immune system.

Generalizable and Non-genetic Approach to Create Metabolically-active-but-non-replicating Bacteria

Researchers at the University of California, Davis have developed a method to stop bacterial growth while maintaining desirable metabolic functions for therapeutic and biotechnological applications.

Sequential Targeting and Crosslinking Nanoparticles for Tackling the Multiple Barriers to Treat Brain Tumors

Researchers at the University of California, Davis have developed an approach to improve drug delivery to tumors and metastases in the brain. Their multi-barrier tackling delivery strategy has worked to efficiently impact brain tumor management while also achieving increased survival times in anti-cancer efficacy.

2-D Polymer-Based Device for Serial X-Ray Crystallography

Researchers at the University of California, Davis have developed a single-use chip for the identification of protein crystals using X-ray based instruments.

Nanocellulose-based Aerogel Fibers as Insulation

Researchers at the University of California, Davis have produced continuous, sheath-core, coaxial fibers with highly porous, nanocellulose, aerogel cores for use as high-performance insulators.

DNA-based, Read-Only Memory (ROM) for Data Storage Applications

Researchers at the University of California, Davis have collaborated with colleagues at the University of Washington and Emory University to develop a DNA-based, memory and data storage technology that integrates seamlessly with semiconductor-based technologies and conventional electronic devices.

Exosome-Mimicking Nanovesicles

Researchers at the University of California, Davis have developed a method of synthesizing stem cell-derived, exosome-mimicking, nanovesicles that have the therapeutic potential to rescue apoptotic neurons in culture.

Development of a CMOS-Compatible, Nano-photonic, Laser

Researchers at the University of California, Davis have developed a new class of lasers and amplifiers that uses a CMOS-compatible electronics platform - and can also be applied to nano-amplifiers and nano-lasers applications.

Athermal Nanophotonic Lasers

Researchers at the University of California, Davis have developed a nanolaser platform built from materials that do not exhibit optical gain.

Higher-Speed and More Energy-Efficient Signal Processing Platform for Neural Networks

Researchers at the University of California, Davis have developed a nanophotonic-based platform for signal processing and optical computing in algorithm-based neural networks that is faster and more energy-efficient than current technologies.

Multi-Wavelength, Nanophotonic, Neural Computing System

Researchers at the University of California, Davis have developed a multi-wavelength, Spiking, Nanophotonic, Neural Reservoir Computing (SNNRC) system with high-dimensional (HD) computing capability.

Generic Method for Controlled Assembly of Molecules

Researchers at the University of California, Davis, in collaboration with researchers at IBM, have developed a widely applicable method to assemble molecules regardless of their intrinsic self-assembly properties.

Conductive and Elastic Nanocellulose Aerogels

Researchers at the University of California, Davis have developed conductive nanocellulose aerogels as building blocks for mechanical strain sensors and coaxial aerogel fibers for cryo- and thermo-protective insulation.

Hybrid Electromechanical Metamaterials for Optical and Electrical Devices

Researchers at the University of California, Davis have developed a hybrid electromechanical metamaterial for use in high frequency applications for optical and electrical devices.

Silicon Based Chirped Grating Emitter for Uniform Power Emission

Researchers at the University of California, Davis, have developed a chirped grating emitter with ultra-sharp instantaneous field of view (IFOV) for optical beam-steering applications.

3D Magnetic Topological Structures for Information Storage

Researchers at the University of California, Davis, have developed a new way to directly create 3-dimensional topological magnetic structures that allows for efficient information storage with potentially low energy dissipation.

Active Nanoplatform with High Drug Loading Capacity for the Diagnosis and Treatment of Cancer

Researchers at the University of California, Davis have developed an active nanoplatform (F/HAPIN) for cancer diagnosis and therapy.

Combined Individual Nanomaterial Enhancements for Total X-Ray Enhancement

Researchers at the University of California, Davis have developed a method to combine individual nanomaterial enhancements to achieve greater X-ray enhancement.

Measurement of Nanoscale Physical Enhancement by Materials under X-ray Irradiation

Researchers at the University of California, Davis have developed a method to study interactions of high density nanoparticles in solution with high spatial resolution.

PVA Nanocarrier System for Controlled Drug Delivery

Researchers at the University of California, Davis have designed and synthesized a unique type of water-soluble, biodegradable targeting poly(vinyl alcohol) (PVA) nanocarrier system for controlled delivery of boronic acid containing drugs, chemotherapy agents, proteins, photodynamic therapy agents and imaging agents.

Ultra Light Amphiphilic and Resilient Nanocellulose Aerogels and Foams

Researchers at the University of California, Davis have developed an energy efficient method of producing ultra-light aerogels with excellent dry compressive strength and tunable hydrophobicity by ambient drying of nanocellulose wet gels.

  • Go to Page: