Available Technologies

Find technologies available for licensing from UC Santa Cruz.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Methods For Generating Target Enrichment Probes For Genome Sequencing Applications

Hybridization capture approaches allow targeted high-throughput sequencing analysis at reduced costs compared to shotgun sequencing. Hybridization capture is particularly useful in analyses of genomic data from ancient, environmental, and forensic samples, where target content is low, DNA is fragmented and multiplex PCR or other targeted approaches often fail. Hybridization capture involves the use of "bait" nucleotides that capture genomic sequences that are of particular interest for the researcher. Current bait synthesis methods require large-scale oligonucleotide chemical synthesis and/or in vitro transcription. Both RNA and DNA bait generation requires synthesizing template oligonucleotides using phosphoramidite chemistry. Microarray-based synthesis generates oligonucleotides in femtomole scales with high chemical coupling error rates. Templates synthesized at small-scale require enzymatic amplification before use in hybridization capture.The solution proposed here involves a simple and highly efficient method to generate target probes using isothermal amplification. Target sequences are circularized and then amplified by rolling circle amplification. This method generates concatemers comprising thousands of copies of the target seqeuence. Restriction digestion of the amplified product then produces probes to use in target enrichment applications. 

Wearable Bioelectronics for Programmable Delivery of Therapy

Precise control of wound healing depends on physician’s evaluation, experience. Physicians provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. Slow healing of recalcitrant wounds is a known persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. 23% of military blast and burn wounds do not close, affecting a patient’s bone, skin, nerves. 64% of military trauma have abnormal bone growth into soft tissue. While newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy.

Bioelectronic Smart Bandage For Controlling Wound pH through Proton Delivery

Precise control of wound healing depends on physician’s evaluation, experience. Physicians provide conditions and time for body to either heal itself, or to accept and heal around direct transplantations, and their practice relies a lot on passive recovery. Slow healing of recalcitrant wounds is a known persistent problem, with incomplete healing, scarring, and abnormal tissue regeneration. 23% of military blast and burn wounds do not close, affecting a patient’s bone, skin, nerves. 64% of military trauma have abnormal bone growth into soft tissue. While newer static approaches have demonstrated enhanced growth of non-regenerative tissue, they do not adapt to the changing state of wound, thus resulting in limited efficacy.

Using Virtual Tile Routing For Navigating Complex Transit Hubs

Many people have learned to appreciate the advent of GPS based navigational applications in our daily lives through the use of street level navigation, and many more loathe the same applications when using them to navigate established public transportation systems. Many of these travelers become confused and frustrated when attempting to understand and act on the directions given to them by such existing applications that primarily focus on large-scale street navigation, especially if the user has a visual or cognitive impairment. Several existing applications will not even attempt to aid someone in the navigation of say, a metro, train or bus station, and instead simply inform the user of the label of the route that the application intends the user to take. Without any small-scale directions many people find themselves struggling to figure out what platform or boarding zone they need to use to get on their preferred method of transportation, as well as how to get to these platforms and boarding zones in the first place. These transit hubs, plazas, malls, and the like have long been a pain in the side of developers and users alike when it comes to navigation. Innovation has long been overdue in this space concerning small scale transit plaza navigation, with major players holding large market shares in navigation not even attempting to address this longstanding problem. The only existing application to offer indoor navigation offers very limited as well as inconsistent functionality including only two-dimensional indoor mapping, due to manually uploaded floor plans that are only available in the first place from partnering locations. This has continued to be an issue due to a lack of adoption by existing locations, as each location is required to draw out their floor plan on an antiquated image file and submit it for approval. Solving this problem would ease a large amount of stress for those navigating in areas they are not familiar with, as well as saving time that could possibly make the difference between a missed train and a nearly missed train.

Deployable Anonymity System: Introducing Sparta

Metadata is used to summarize basic information about data that can make tracking and working with specific data easier. Today’s communication systems, like WhatsApp, iMessage, and Signal, use end-to-end encryption to protect message contents. Such communication systems do not hide metadata, which is the data providing information about one or more aspects of such contents, like messages. Such metadata includes information about who communicates with whom, when, and how much, and is generally visible to systems and network observers. As a result, cyber risk associated with metadata leakage and traffic analysis remains a significant attack vector in such modern communication systems. Previous attempts to address this risk have been generally seen as not secure or prohibitively expensive, for example, by imposing inflexible bandwidth restrictions and cumbersome synchronous schedules globally, which cripples performance. Moreover, prior approaches relied on distributed trust for security, which is largely incompatible with conventional organizations hosting or using such apps.

An Efficient Deep Learning Model For Single-Cell Segmentation And Tracking In Time-Lapse Microscopy

Time-lapse microscopy allows for direct observation of cell biological processes at the single-cell level with high temporal resolution. Quantitative analysis of single-cell time-lapse microscopy requires automated segmentation and tracking of individual cells over several days. Precise segmentation and tracking remain challenging because cells change their shape, divide, and show unpredictable movements.Researchers at UC Santa Cruz applied recent advances in the application of deep-learning models to the analysis of cellular images. The result was a deep-learning-based model and a user-friendly software, termed DeepSea, that automates both the segmentation and tracking of individual cells in time-lapse microscopy images.

15Lox1 Inhibitors For Stroke

Stroke is a leading cause of mortality and disability worldwide and the economic costs of treatment and post-stroke care are substantial. Every year, more that 14 million people are affected by stroke, and over 6 million stroke patients die from this condition and associated complications. 2-(2,3,5-trisubstituted phenyl)oxazole compounds potently inhibit 12/15-LOX. Hence, the compounds of this disclosure are advantageously useful to treat or prevent various disorders where 12/15-LOX is implicated in the pathology of the disorder (e.g.,stroke). 

Novel Human 12-Lipoxygenase (Lox) Inhibitors

Human Platelet-type 12-(S)-lipoxygenase (12-LOX) is a non-heme iron-containing oxygenase that catalyzes the regio- and stereo-specific addition of molecular oxygen to polyunsaturated fatty acids (PUFA). 12-LOX belongs to a family of enzymes that also include 5- LOX and 15-LOX, which oxygenate arachidonic acid (AA) at their corresponding carbon positions. The hydroperoxyeicosatetraenoic acid (HPETE) product is subsequently reduced by cellular peroxidases to form the hydroxyeicosatetraenoic acid (HETE), which in the case of 12- LOX is 12-(S)-HETE.Although 12-LOX expression is predominantly restricted to platelets (~14,000 molecules per platelet), it is also expressed in some hematopoietic and solid tumors. To date, 12-LOX is the only LOX isoform identified to be present in platelets, and its activity is part of a number of platelet functions, including granule secretion, platelet aggregation, and normal adhesion through specific agonist-mediated pathways, such as collagen and the thrombin receptor, PAR4. Normal platelet activation plays a central role in the regulation of hemostasis, but uncontrolled activation can lead to pathologic thrombotic events, such as ischemic coronary heart disease.