Available Technologies

No technologies match these criteria. Please broaden your search criteria and try again.

Find technologies available for licensing from UC Santa Barbara.

Versatile, Modular and Affordable Microwave and Radiofrequency Magnetic Resonance Setup for Dynamic Nuclear Polarization

A DNP setup operating at a magnetic field at or above 5 Tesla, powered by a solid state microwave source, transmitted using low loss quasi optics and utilizes an externally tunable, inductively coupled radio frequency probe integrated into part of the waveguide to provide efficient microwave transmission to the sample while maintaining good NMR performance and complete hardware modularity.

Engineering Human Proteases for Therapeutic Use

A methodology termed “protease evolution via cleavage of an intracellular substrate” (PrECISE) to enable engineering of human protease activity and specificity toward an arbitrary peptide target. 

Hyaluronic Acid-based Gel for Topical and Subcutaneous Applications

A method for producing chemically-crosslinked hydrogels using a biocompatible “click” chemistry for in situ gelation. 

Planar, Nonpolar M-Plane III-Nitride Films Grown on Miscut Substrates

A method for growing planar nonpolar III-nitride films that have atomically smooth surfaces without any macroscopic surface undulations. 

Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices

A method to grow semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices on suitable substrates or planar templates in which a large area of the semipolar film is parallel to the substrate surface. 

Solid Solution Phosphors for Use in Solid State White Lighting Applications

A new green- and yellow-emitting phosphor material via solid solution that can be used to create a white light emitting diode. 

Transparent Mirrorless (TML) LEDs

Minimizes the re-absorption of LED light by using transparent conductive oxide electrodes (ITO or ZnO) instead of mirrors. 

Bio-Inspired Actuator to Protect Buildings from Seismic Activity

An adjustable force versus displacement device that features positive and negative stiffness, an adjustable maximum force, and a tunable activation system. 

University of California, Santa Barbara
Office of Technology & Industry Alliances

342 Lagoon Road,Santa Barbara,CA 93106-2055 |
Tel: 805-893-2073 | Fax: 805.893.5236 | shaw@tia.ucsb.edu