Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from all ten University of California (UC) campuses.

Method for Estimating Blood Plasma Water Content Using Portable NMR Relaxometry

Researchers at the University of California, Davis have developed a method of estimating blood plasma water content using nuclear magnetic resonance (NMR) relaxometry.

Synthetic Biology Methods and Systems to Synthesize Strigolactone

Prof. Yanran Li and colleagues from the University of California, Riverside have developed a biosynthetic method for producing different strigolactones by designing different biosynthetic pathways in engineered microbial systems. The invention includes engineered E. coli - S. cerevisiae co-culture systems for the biosynthesis of both non-canonical and canonical SLs, including but not limited to carlactone (CL), carlactonic acid (CLA), 5-deoxystrigol(5DS), 4-Deoxyorobanchol (4DO) and orobanchol. This technology allows SLs to be biosynthetically produced in large scale for use in innovative  agrochemicals such as phyto-regulators,  fertilizers, biostimulants that enhance the nutrient uptake efficiency. Fig 1: Mimicking plant strigolactone pathway distribution in the engineered E. coli-S. cerevisiae coculture.

Humanized, potent monoclonal antibodies against murine and human integrin avb8 for cancer immunotherapy and prevention of corneal scarring after cataract surgery

Immunotherapy has revolutionized the treatment of many cancers, but even for the most sensitive tumor types most patients do not respond to current immunotherapy regimens. One major block to effective anti-tumor immunity is inhibition of the function of effector T cells by active TGFβ in tumors. For this reason, several major pharmaceutical companies have invested substantial resources in developing inhibitors of TGFβ ligands or TGFβ signaling to enhance anti-tumor immunity. However, because TGFβ isoforms (TGFβ1, 2 and 3) play multiple important homeostatic roles, highly effective inhibition of TGFβ function causes severe toxicity, as seen by the embryonic or perinatal lethality of knockout of each of the 3 mammalian TGFβs. Even the relatively ineffective TGFβ inhibitors that have entered clinical trials have been withdrawn because of unacceptable toxicity (cardiac valve thickening and skin cancer). We have thus spent the past 20 years developing drugs targeting TGFβ activating integrins, which only activate a small fraction of extracellular latent TGFβ in precise contexts relevant to specific diseases, with the goal of increasing precision and greatly reducing the potential for toxicity. 

Synergistic Enzyme Mixtures to Realize Near-Complete Depolymerization in Blends

In this technology, the inventors introduce additives to purposely change the morphology of polycaprolactone (PCL) by increasing the bending and twisting of crystalline lamellae. These morphological changes immobilize chain-ends preferentially at the crystalline/amorphous interfaces and limit chain-end accessibility by the embedded processive enzyme. This chain end redistribution reduces the polymer-to-monomer conversion from >95% to less than 50%, causing formation of highly crystalline plastic pieces including microplastics. By synergizing both random chain scission and processive depolymerization, it is feasible to navigate morphological changes in polymer/additive blends and to achieve near complete depolymerization. The random scission enzymes in the amorphous domains create new chain ends that are subsequently bound and depolymerized by processive enzymes. Present studies further highlight the importance to consider host polymer morphological effects on the reactions catalyzed by embedded catalytic species.This is part of a patent family in compostable plastics.  

Expression Of Heme Biosynthesis And Heme Proteins In Edible Filamentous Fungi

The inventors have overexpressed heme biosynthesis genes in edible filamentous fungi to elevate heme levels beyond the endogenous levels already produced in these organisms. Overexpression of key biosynthetic enzymes, including a Heme Regulatory Motif (HRM) mutant in ALAS, as well as ALAD, UROD, HEMC, UROD, and FC, in different combinations in the edible filamentous fungus Aspergillus oryzae NSAR1, significantly increased heme levels up to 15-fold above the non-engineered background strain, as assessed by LC-MS. The fungal biomass is red in appearance and is used in meat replacement, including burgers, filets and other whole-cut formulations, bacon, and sausages. The invention gives fungal biomass a meat-like flavor.

Acid Degradable Solid Lipid Nanoparticles

The inventors demonstrate that polyethylene glycol (PEG) conjugated to cholesterol via an acid degradable linkage composed of an azide-benzaldehyde acetal has the potential to allow solid lipid nanoparticles (SLNs) to be PEGylated with mole ratios up to 50%. The azide-benzaldehyde acetal, has its azide in the para position, and generates stable acetals with a t ½ of > 1000 minutes at pH 7.4. These PEG-acetals can be formulated into SLNs, and stored, and then reduced prior to biological use, to generate an amino acetal that has t ½ < 60 minutes at pH 7.4 and several minutes at pH 5.0. The ultra-PEGylated lipids were efficient at transfecting a variety of organs, including the muscle, the lung, spleen and liver and were also able to transfect the blood. Acid degradable PEG-lipids have great potential for overcoming the PEG dilemma, but have previously been challenging to develop due to the synthetic challenges associated with working with acetals and their instability at pH 7.4. (SLNs contain a PEGylated lipid, generally in the 1-5% range, which is needed to maintain SLN stability, size, and tissue diffusion, and lower toxicity. However, excessive PEGylation also results in lower cell uptake and endosomal disruption — a paradox referred to as the PEG dilemma.) The inventors anticipate numerous applications of the azide-benzaldehyde acetal linker, given its unique ability to be stable prior to reductive activation. 

Biodegradable Potentiometric Sensor to Measure Ion Concentration in Soil

The inventors have developed ion-selective potentiometric sensors for monitoring soil analytes with naturally degradable substrate, conductor, electrode, and encapsulant materials that minimize pollution and ecotoxicity. This novel sensor-creation method uses printing technologies for the measurement of nitrate, ammonium, sodium, calcium, potassium, phosphate, nitrite, and others. Monitoring soil analytes is key to precision agriculture and optimizing the health and growth of plant life. 

Compressive High-Speed Optical Transceiver

Researchers at the University of California, Davis have developed an optical transceiver that uses compressive sensing to reduce bandwidth requirements and improve signal resolution.