4-N-Derivatized Sialic Acids and Related Sialosides

Tech ID: 33647 / UC Case 2024-540-0

ABSTRACT

Researchers at the University of California, Davis have developed advanced compounds targeting neuraminidase activity to combat viral infections and understand cellular mechanisms.

FULL DESCRIPTION

This technology encompasses the synthesis of sialic acid (Sia) derivatives designed for the inhibition of neuraminidases, crucial in the pathogenesis of viral infections and several cellular processes. These compounds, including pharmaceutically acceptable salts, are based on specific structural formulas that allow for targeted interaction with neuraminidases, offering potential therapeutic and research applications.

APPLICATIONS

▶ Pharmaceuticals for the treatment of viral infections.
▶ Biomedical research tools for studying cellular processes and viral mechanisms.
▶ Diagnostic kits for neuraminidase activity and influenza virus detection.

FEATURES/BENEFITS

▶ Targeted inhibition of neuraminidase activity.
▶ Potential to interfere with viral infections, including influenza.
▶ Can be used in research to purify neuraminidases or detect their presence.
▶ Offers a platform for further exploration of sialic acid's biological roles.
▶ Addresses challenges in synthetically producing biologically relevant sialic acids.
▶ Reduces difficulty in studying and targeting neuraminidase-related processes.
▶ Provides for lack of specific inhibitors for neuraminidase in biomedical research and therapy.

PATENT STATUS

Patent Pending

CONTACT

Victor Haroldsen
haroldsen@ucdavis.edu
tel: 530-752-7717.

KEYWORDS

infectious disease,
Influenza A, influenza virus, influenza virus neuraminidase, influenza virus neuraminidase substrate, inhibitors & probes, influenza virus vaccine

CATEGORIZED AS

▶ Medical
▶ Diagnostics
▶ Disease:
▶ Infectious Diseases
▶ New Chemical Entities, Drug Leads
▶ Other
▶ Therapeutics
▶ Vaccines

RELATED CASES

2024-540-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ Purification of Glycosphingolipids
A Photobacterium Sp. Alpha2-6-Sialytransferase 9Psp2.6St) A366g Mutant With Increased Expression Level And Improved Activity In Sialylating Tn Antigen
Synthesis of Capsular Polysaccharides
Legionaminic Acid Glycosyltransferases for Chemoenzymatic Synthesis of Glycans and Glycoconjugates
Using Escherichia coli to Produce Human Milk Oligosaccharide Lactodifucotetraose
Substrate And Process Engineering For Biocatalytic Synthesis And Facile Purification Of Human Milk Oligosaccharides (HMOs)
O-Acetyl Glycosphingosines and Gangliosides, as well as Their N-Acetyl Analogs
Stable N-acetylated analogs of Sialic Acids and Sialyloligosaccharides
Alpha1–2-Fucosyltransferase for Enzymatic Synthesis of Alpha1–2-linked Fucosylated Glycans
One-Pot Multienzyme Synthesis of Sialidase Reagents, Probes and Inhibitors
Novel Methods For Chemical Synthesis Of Lactosyl Sphingosines, Glucosylsphingosines, Galactosylsphingosines, And 3-O-Sulfogalactosylsphingosines