Fully Automated Multi-Organ Segmentation From Medical Imaging
Tech ID: 33455 / UC Case 2020-303-0

BRIEF DESCRIPTION
A comprehensive method for automated multi-organ segmentation based on deep fully convolutional networks and adversarial training, achieving superior results compared to existing techniques.

APPLICATIONS
- Improvements in medical imaging technology
- Integration into AI-based diagnostic systems
- Enhancements in research applications requiring organ segmentation

ADVANTAGES
- Utilizes fully convolutional networks and adversarial training
- Offers a fully automated system, reducing the need for human intervention
- Provides superior results, as demonstrated by high Dice metrics

Problems Solved:
* Solves the problem of time-consuming and error-prone manual multi-organ segmentation
* Improves upon the accuracy limitations of existing automated methods

DESCRIPTION
This technology offers a fully-automatic method for multi-chamber segmentation, utilizing deep fully convolutional networks and adversarial training. The system was successfully tested on 20 echocardiograms from 100 patients for training and validation, outperforming state-of-the-art techniques with significantly improved Dice metrics.

PATENT STATUS
<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Published Application</td>
<td>2021-001288</td>
<td>01/14/2021</td>
<td>2020-303</td>
</tr>
</tbody>
</table>

CONTACT
Richard Y. Tun
tunr@uci.edu
tel: 949-824-3586.

INVENTORS
- Arafati, Arghavan
- Jafarkhani, Hamid
- Kheradvar, Arash

OTHER INFORMATION
CATEGORIZED AS
- Imaging
- Medical
- Medical
- Diagnostics
- Imaging
- Other
- Research Tools
- Research Tools
- Other
RELATED CASES

2020-303-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Percutaneous Heart Valve Delivery System Enabling Implanted Prosthetic Valve Fracture
- A distensible wire mesh for a cardiac sleeve
- Method to Improve the Accuracy of an Independently Acquired Flow Velocity Field Within a Chamber, Such as a Heart Chamber
- Percutaneous Heart Valve Delivery System
- Growth-Accommodating Transcatheter Pulmonary Valve System
- System for Transcatheter Grabbing and Securing the Native Mitral Valve’s Leaflet to a Prosthesis
- Multiple-Input Multiple-Output (MIMO) Systems for Multi-Packet Reception (MPR)
- Method for Synchronizing a Pulsatile Cardiac Assist Device with the Heart
- Automated Histological Image Processing tool for Identifying and Quantifying Tissue Calcification
- Cost-Efficient Repair For Cloud Storage Systems Using Progressive Engagement
- Simple, User-friendly Irrigator Device for Cleaning the Upper Aerodigestive Tract and Neighboring Areas
- Automated 3D Reconstruction of the Cardiac Chambers From MRI of Ultrasound
- Minimally Invasive Percutaneous Delivery System for a Whole-Heart Assist Device