Legionaminic Acid Glycosyltransferases for Chemoenzymatic Synthesis of Glycans and Glycoconjugates

Tech ID: 33435 / UC Case 2022-592-0

ABSTRACT
Researchers at the University of California, Davis have developed a method for preparing a glycan product containing a nonulosonic acid moiety by means of legionaminic acid transferase fusion proteins.

FULL DESCRIPTION
Researchers at the University of California Davis have developed a technology that revolves around the method of preparing a glycan product with a nonulosonic acid moiety. It involves the creation of a reaction mixture including a legionaminic acid transferase (LegT), a donor comprising a nonulosonic acid moiety, and a glycan acceptor. This process is performed under conditions for LegT-catalyzed transfer of the nonulosonic acid moiety from the donor to the glycan acceptor to create the glycan product.

APPLICATIONS
- Pharmaceutical Industry
- Biotechnology
- Chemical Engineering

FEATURES/BENEFITS
- Pharmaceutical Industry: Production of effective vaccines and drugs.
- Biotechnology: Advancements in glycan research.
- Chemical Engineering: Enhancement of existing chemical synthesis processes.

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
</table>

INVENTORS
- Chen, Xi
- Mishra, Bijoyananda
- Yang, Xiaohong
- Yu, Hai

OTHER INFORMATION
KEYWORDS
biocatalysis, bacterial carbohydrate, polysaccharide, chemoenzymatic synthesis, glycosyltransferase, legionaminic acid, nonulosonic acid

CATEGORIZED AS
- Biotechnology
- Health
- Other
- Materials & Chemicals
- Chemicals
- Other

RELATED CASES
2022-592-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
- Purification of Glycosphingosines and Glycosphingolipids
- A Photobacterium Sp. Alpha2-6-Sialytransferase 9Psp2.6St) A366g Mutant With Increased Expression Level And Improved Activity In Sialylating Tn Antigen
- Synthesis of Capsular Polysaccharides
Using Escherichia coli to Produce Human Milk Oligosaccharide Lactodifucotetraose
Substrate And Process Engineering For Biocatalytic Synthesis And Facile Purification Of Human Milk Oligosaccharides (HMOs)
O-Acetyl Glycosphingosines and Gangliosides, as well as Their N-Acetyl Analogs
Stable N-acetylated analogs of Sialic Acids and Sialosides
Alpha1–2-Fucosyltransferase for Enzymatic Synthesis of Alpha1–2-linked Fucosylated Glycans
One-Pot Multienzyme Synthesis of Sialidase Reagents, Probes and Inhibitors