HYPERSPECTRAL MICROSCOPY USING A PHASE MASK AND SPECTRAL FILTER ARRAY

Hyperspectral imaging, the practice of capturing detailed spectral (color) information from the output of an optical instrument such as a microscope or telescope, is useful in biological and astronomical research and in manufacturing. In addition to being bulky and expensive, existing hyperspectral imagers typically require scanning across a specimen, limiting temporal resolution and preventing dynamic objects from being effectively imaged. Snapshot methods which eliminate scanning are limited by a tradeoff between spatial and spectral resolution.

In order to address these problems, researchers at UC Berkeley have developed a hyperspectral imager which can be attached to the output of any benchtop microscope. The imager is compact (about 6-inches), and can achieve a higher spatial resolution than traditional snapshot imagers. Additionally, this imager needs only one exposure to collect measurements for an arbitrary number of spectral filters, giving it unprecedented spectral resolution.

SUGGESTED USES
Hyperspectral imaging, for example in biological and medical contexts, where high temporal, spatial, and spectral resolution are simultaneously desired.

ADVANTAGES
This imager, like traditional snapshot imagers, allows for dynamic systems to be studied by eliminating the need to scan across a specimen. In addition to being smaller and cheaper than existing devices, however, this imager can simultaneously achieve unprecedented spatial and spectral resolution.

RELATED MATERIALS

KEYWORDS
Hyperspectral imaging, fluorescence imaging, microscopy

CATEGORIZED AS
Imaging
Medical
Molecular
Medical
Diagnostics
Imaging
Research Tools
Research Tools
Other
Sensors & Instrumentation
Medical

RELATED CASES
2023-120-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
Compressive Plenoptic Imaging
Optical Phase Retrieval Systems Using Color-Multiplexed Illumination
Partially Coherent Phase Recovery By Kalman Filtering