Epigenetic Prevention and Treatment of CDKL5 Deficiency Disorder

Tech ID: 32876 / UC Case 2019-800-0

ABSTRACT

Researchers at the University of California, Davis have developed a targeted epigenetic approach for the prevention and treatment CDKL5 deficiency disorder.

FULL DESCRIPTION

CDKL5 is a gene found on the X-chromosome that is responsible for producing an essential protein for brain development and function. Mutations of this gene can lead to CDKL5 deficiency disorder (CDD), affecting around 1 in 40,000 individuals. Symptoms typically begin in infancy and include seizures, limited motor functionality, and developmental delays. Anti-seizure medications are used to treat symptoms of the disorder, but there are currently no comprehensive treatments for CDD. Research has been conducted on small-molecule drugs to treat CDD and similar X-linked disorders through gene reactivation; however, such drugs typically cause global gene reactivation of the X-chromosome, making them unsuitable for targeted treatments. Furthermore, these treatments have limited therapeutic potential as they rely on cell proliferation to function.

Researchers at the University of California, Davis have developed a new targeted approach for preventing and treating CDD. In particular, the new approach uses CRISPR/Cas9-based techniques to guide epigenetic modifiers to desired genomic loci, thus enabling a synthetic escape of the CDKL5 gene from X-chromosomal inactivation while avoiding global X-chromosomal reactivation.

APPLICATIONS

▶ Prevention or treatment of CDKL5 deficiency disorder

FEATURES/BENEFITS

▶ Focuses on target allele without global X-chromosome reactivation
▶ Does not rely on cell proliferation

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Published Application</td>
<td>20220389393</td>
<td>12/08/2022</td>
<td>2019-800</td>
</tr>
</tbody>
</table>

CONTACT

Prabakaran Soundararajan
psoundararajan@ucdavis.edu
tel: .
Multiplex Epigenetic Editing using a Split-dCas9 System