BIODEGRADABLE POTENTIOMETRIC SENSOR TO MEASURE ION CONCENTRATION IN SOIL

Tech ID: 32471 / UC Case 2022-008-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

The inventors have developed ion-selective potentiometric sensors for monitoring soil analytes with naturally degradable substrate, conductor, electrode, and encapsulant materials that minimize pollution and ecotoxicity. This novel sensor-creation method uses printing technologies for the measurement of nitrate, ammonium, sodium, calcium, potassium, phosphate, nitrite, and others. Monitoring soil analytes is key to precision agriculture and optimizing the health and growth of plant life.

SUGGESTED USES

These sensors can be used for applications such as, but not limited to, soil health monitoring, agricultural growth predictions, analyte flux measurements, greenhouse gas production, and chemical leaching/runoff.

ADVANTAGES

These soil analysis sensors:

» can be produced at scale
» can selective target ions of interest
» are inexpensive
» are simple to fabricate
» are easy to read
» are environmentally friendly

RELATED MATERIALS

CONTACT

Laleh Shayesteh
lalehs@berkeley.edu
tel: 510-642-4537

INVENTORS

» Arias, Ana Claudia

OTHER INFORMATION

KEYWORDS

precision agriculture, flexible electronics, chemical sensors, ion selective membrane, definitive screening design, potentiometric sensors, nitrate sensors, agriculture sensors

CATEGORIZED AS

» Agriculture & Animal Science
» Devices
» Environment
» Sensing
» Sensors & Instrumentation
» Environmental Sensors
» Materials & Chemicals

RELATED CASES

2022-008-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

» Printed All-Organic Reflectance Oximeter Array
» Scalable And High-Performance Pressure Sensors For Wearable Electronics
» Pulse Oximeter Using Ambient Light
A Potentiometric Mechanical Sensor
Simultaneous Doctor Blading Of Different Colored Organic Light Emitting Diodes
Organic Multi-Channel Optoelectronic Sensors For Smart Wristbands
Printed Organic Leds And Photodetector For A Flexible Reflectance Measurement-Based Blood Oximeter