Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
Tech ID: 32271 / UC Case 2021-567-0

BACKGROUND

In conventional UVLED nitride devices, a metal mirror is often used as an electrical contact and requires the incorporation of other metals in order to obtain a low resistance electrical contact with the semiconductor material. These additional metals, however, are not transparent to emitted photons which causes a significant decrease in device efficiency. Although dielectric mirrors provide a potential alternative, their poor electrical properties are not suitable for high efficiency devices.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a nitride based UVLED with an ultraviolet transparent contact (UVTC) that is an alloy composition of (Ga, Al, In, B)O semiconductors, such as Ga2O3. The n-type, p-type and UVTC regions are all transparent to UV light and minimize internal reflections within the UVLED by eliminating mirrors and/or mirrored surfaces. As a result, the UVLED output is drastically increased via the minimization of light re-absorption. Therefore, the improved light emission efficiency of UVLEDs enables the expansion of ultraviolet semiconductor device applications into a variety of commercial products.

ADVANTAGES

▶ Increased light efficiency
▶ Expands UVLED applications

APPLICATIONS

▶ UVLEDs
▶ LEDs
▶ Micro-LEDs

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Published Application</td>
<td>20230420617</td>
<td>12/28/2023</td>
<td>2021-567</td>
</tr>
</tbody>
</table>

CONTACT

Pasquale S. Ferrari
ferrari@tia.ucsb.edu
tel: .

INVENTORS

▶ DenBaars, Steven P.
▶ Iza, Michael
▶ Nakamura, Shuji
▶ Wong, Matthew S.

OTHER INFORMATION

KEYWORDS

UVLED, LED, micro-LED,
UVTC, transparent, ultraviolet
transparent contact

CATEGORIZED AS

▶ Energy
▶ Lighting
▶ Semiconductors
▶ Design and Fabrication

RELATED CASES

2021-567-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
III-Nitride-Based Vertical Cavity Surface Emitting Laser (VCSEL) with a Dielectric P-Side Lens
Aluminum-cladding-free Nonpolar III-Nitride LEDs and LDs
Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
Defect Reduction in GaN films using in-situ SiNx Nanomask
Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
Implantable Light Irradiation Device For Photodynamic Therapy
Low Temperature Deposition of Magnesium Doped Nitride Films
Transparent Mirrorless (TML) LEDs
Improved GaN Substrates Prepared with Ammonothermal Growth
Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
Method for Enhancing Growth of Semipolar Nitride Devices
Ultraviolet Laser Diode on Nano-Porous AlGaN template
Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
Nonpolar III-Nitride LEDs With Long Wavelength Emission
Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
Method for Growing High-Quality Group III-Nitride Crystals
Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
Oxyfluoride Phosphors for Use in White Light LEDs
Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
(In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
Group III-N Light Emitting Devices Enhanced By Stress From Post-Growth Deposited Films
Thermally Stable, Laser-Driven White Lighting Device
MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
Methods for Fabricating III-Nitride Tunnel Junction Devices
Low-Droop LED Structure on GaN Semi-polar Substrates
Contact Architectures for Tunnel Junction Devices
Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
Growth of Semipolar III-V Nitride Films with Lower Defect Density
III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
Tunable White Light Based on Polarization-Sensitive LEDs
Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
Growth of High-Performance M-plane GaN Optical Devices
Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
Improved Anisotropic Strain Control in Semipolar Nitride Devices
Novel Multilayer Structure for High-Efficiency UV and Far-UV Light-Emitting Devices
III-V Nitride Device Structures on Patterned Substrates
Method for Increasing GaN Substrate Area in Nitride Devices
High-Intensity Solid State White Laser Diode
GaN-Based Thermoelectric Device for Micro-Power Generation

Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning

LED Device Structures with Minimized Light Re-Absorption

Growth of Planar Semi-Polar Gallium Nitride

High-Efficiency and High-Power III-Nitride Devices Grown on or Above a Strain Relaxed Template

UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys

Defect Reduction of Non-Polar and Semi-Polar III-Nitrides

III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture

Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD