IMPROVED CAS12A PROTEINS FOR ACCURATE AND EFFICIENT GENOME EDITING

Tech ID: 30433 / UC Case 2019-162-0

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Published Application</td>
<td>20220315914</td>
<td>10/06/2022</td>
<td>2019-162</td>
</tr>
</tbody>
</table>

BRIEF DESCRIPTION

Mutated versions of Cas12a that remove its non-specific ssDNA cleavage activity without affecting site-specific double-stranded DNA cutting activity. These mutant proteins, in which a short amino acid sequence is deleted or changed, provide improved genome editing tools that will avoid potential off-target editing due to random ssDNA nicking.

SUGGESTED USES

Genome editing in animals, plants, and human cells.

ADVANTAGES

Accurate and efficient genome editing.

Background: Cas12a (formerly called Cpf1) is a type V CRISPR-Cas enzyme derived from bacteria that is used for RNA-guided genome editing in animal, plant and human cells. However, Cas12a possesses an additional enzymatic activity in which a DNA target-bound Cas12a can rapidly and non-specifically degrade any single-stranded DNA (ssDNA) substrate in a sequence-independent manner. This enzymatic activity is endonucleolytic, which means that the ssDNA substrate does not need a free 5' or 3' end to be cut. For this reason, natural Cas12a-type enzymes have the potential to induce off-target genome editing due to nicking of exposed ssDNA in cells.

CONTACT

Terri Sale
terri.sale@berkeley.edu
tel: 510-643-4219.

INVENTORS

» Doudna, Jennifer A.

OTHER INFORMATION

KEYWORDS
genome editing, Cas12a

CATEGORIZED AS

» Agriculture & Animal Science
» Animal Science
» Plant Science
» Plant Traits
» Plant Varieties
» Transgenics
» Biotechnology
» Food
» Genomics
» Health
» Proteomics
» Environment
» Other
» Medical
» Gene Therapy
» Research Tools
» Screening
» Therapeutics
» Veterinary
RELATED CASES
2019-162-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
- COMPOSITIONS AND METHODS FOR IDENTIFYING HOST CELL TARGET PROTEINS FOR TREATING RNA VIRUS INFECTIONS
- Lentivirus-like Particle Delivery of CRISPR-Cas9 & Guide RNA for Gene Editing
- Genome Editing via LNP-Based Delivery of Efficient and Stable CRISPR-Cas Editors
- Type III CRISPR-Cas System for Robust RNA Knockdown and Imaging in Eukaryotes
- Cas12-mediated DNA Detection Reporter Molecules
- Improved guide RNA and Protein Design for CasX-based Gene Editing Platform
- Cas13a/C2c2 - A Dual Function Programmable RNA Endoribonuclease
- RNA-directed Cleavage and Modification of DNA using CasY (CRISPR-CasY)
- CasX Nickase Designs, Tans Cleavage Designs & Structure
- In Vivo Gene Editing Of Tau Locus Via Liponanoparticle Delivery
- A Dual-RNA Guided CasZ Gene Editing Technology
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF ("Cas-VariPhi")
- Modifications To Cas9 For Passive-Delivery Into Cells
- A Protein Inhibitor Of Cas9
- RNA-directed Cleavage and Modification of DNA using CasX (CRISPR-CasX)
- Compositions and Methods for Genome Editing
- Split-Cas9 For Regulatable Genome Engineering
- NANOPORE MEMBRANE DEVICE AND METHODS OF USE THEREOF
- Methods to Interfere with Prokaryotic and Phage Translation and Noncoding RNA
- CRISPR CASY COMPOSITIONS AND METHODS OF USE
- Single Conjugative Vector for Genome Editing by RNA-guided Transposition
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF
- Engineered/Variant Hyperactive CRISPR CasPhi Enzymes And Methods Of Use Ther eof
- Engineering Cas12a Genome Editors with Minimized Trans-Activity
- Methods Of Use Of Cas12L/CasLambda In Plants
- Type V CRISPR/Cas Effector Proteins for Cleaving ssDNA and Detecting Target DNA
- THERMOSTABLE RNA-GUIDED ENDONUCLEASES AND METHODS OF USE THEREOF (GeoCas9)
- Structure-Guided Methods Of Cas9-Mediated Genome Engineering
- Endoribonucleases For Rna Detection And Analysis
- Efficient Site-Specific Integration Of New Genetic Information Into Human Cells
- CRISPR-Cas Effector Polypeptides and Methods of Use Ther eof
- Class 2 CRISPR/Cas COMPOSITIONS AND METHODS OF USE
- Compositions and Methods of Use for Variant Cas4 Endoribonucleases
- Identification Of Sites For Internal Insertions Into Cas9
- Small Molecule Assisted Cell Penetrating Cas9 RNP Delivery
- Methods and Compositions for Controlling Gene Expression by RNA Processing