CASX NICKASE DESIGNS, TANS CLEAVAGE DESIGNS & STRUCTURE

Tech ID: 29659 / UC Case 2019-011-0

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Published Application</td>
<td>20210309981</td>
<td>10/07/2021</td>
<td>2019-011</td>
</tr>
<tr>
<td>European Patent Office</td>
<td>Published Application</td>
<td>3841205 A0</td>
<td>06/30/2021</td>
<td>2019-011</td>
</tr>
</tbody>
</table>

BRIEF DESCRIPTION

Metagenomic analysis of microbial DNA from groundwater samples revealed a new protein, CasX, that prevented bacterial transformation by plasmid DNA when expressed with cognate crRNAs targeting the plasmids. Sequence analysis of CasX revealed no similarity to other CRISPR-Cas enzymes, except for the presence of a RuvC nuclease domain similar to that found in both Cas9 and Cas12a enzyme families as well as transposases and recombinases. The evolutionary ambiguity of CasX hinted at a distinct structure and mechanism for DNA targeting, but without reconstitution of a functional CasX enzyme it was not possible to determine its mechanism of plasmid interference.

UC Berkeley inventors found variant CasX polypeptides that induce programmable, site-specific genome repression in E. coli and genome editing in human cells, distinct from Cas9 and Cas12a, which establishes this enzyme family as a third CRISPR-Cas system for genetic manipulation.

SUGGESTED USES

- Genome editing
- Gene therapy
- Research tools
- Genomic imaging

ADVANTAGES

- Functions under different conditions than currently used CRISPR-Cas proteins
- Nucleotide sequence encoding the CasX is short, therefore especially useful when using a viral vector for delivery to cells

RELATED CASES

2019-011-0
ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- COMPOSITIONS AND METHODS FOR IDENTIFYING HOST CELL TARGET PROTEINS FOR TREATING RNA VIRUS INFECTIONS
- Genome Editing via LNP-Based Delivery of Efficient and Stable CRISPR-Cas Editors
- Type III CRISPR-Cas System for Robust RNA Knockdown and Imaging in Eukaryotes
- Cas12-mediated DNA Detection Reporter Molecules
- Improved guide RNA and Protein Design for CasX-based Gene Editing Platform
- Cas13a/C2c2 - A Dual Function Programmable RNA Endoribonuclease
- RNA-directed Cleavage and Modification of DNA using CasY (CRISPR-CasY)
- In Vivo Gene Editing OfTau Locus Via Liponanoparticle Delivery
- A Dual-RNA Guided CasZ Gene Editing Technology
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF ("Cas-VariPhi")
- Modifications To Cas9 For Passive-Delivery Into Cells
- A Protein Inhibitor Of Cas9
- RNA-directed Cleavage and Modification of DNA using CasX (CRISPR-CasX)
- Compositions and Methods for Genome Editing
- Split-Cas9 For Regulatable Genome Engineering
- NANOPORE MEMBRANE DEVICE AND METHODS OF USE THEREOF
- Methods to Interfere with Prokaryotic and Phage Translation and Noncoding RNA
- CRISPR CASY COMPOSITIONS AND METHODS OF USE
- Single Conjugative Vector for Genome Editing by RNA-guided Transposition
- Improved Cas12a Proteins for Accurate and Efficient Genome Editing
- CRISPR-CAS EFFECTOR POLYPEPTIDES AND METHODS OF USE THEREOF
- Engineered/Variant Hyperactive CRISPR CasPhi Enzymes And Methods Of Use Thereof
- Engineering Cas12a Genome Editors with Minimized Trans-Activity
- Methods Of Use Of Cas12L/CasLambda In Plants
- Type V CRISPR/CAS Effector Proteins for Cleaving ssDNA and Detecting Target DNA
- THERMOSTABLE RNA-GUIDED ENDONUCLEASES AND METHODS OF USE THEREOF (GeoCas9)
- Structure-Guided Methods Of Cas9-Mediated Genome Engineering
- Endoribonucleases For Rna Detection And Analysis
- Efficient Site-Specific Integration Of New Genetic Information Into Human Cells
- CRISPR-Cas Effector Polypeptides and Methods of Use Thereof
- Class 2 CRISPR/Cas COMPOSITIONS AND METHODS OF USE
- Compositions and Methods of Use for Variant Cas4 Endoribonucleases
- Identification Of Sites For Internal Insertions Into Cas9
- Methods and Compositions for Controlling Gene Expression by RNA Processing