Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning

Tech ID: 24137 / UC Case 2010-804-0

BRIEF DESCRIPTION

A new method of improving performance of group-III nitride devices by limiting the strain-relaxation on crystal substrates.

BACKGROUND

The usefulness of group-III nitrides such as gallium nitride (GaN) and its alloys has been well established for its use in the fabrication of optoelectronic and high-powered electronic devices. Given recent trends in industry standards, it is desirable to produce ultra-bright LEDs and LDs in regions beyond the blue region and in the green region. The problem with producing LEDs and LDs in the green regions by epitaxy is due to the complications in producing high-quality, high-in-composition crystals. When high-in-composition crystal structures are grown on a strained substrate layer, this causes misfit dislocations which degrade device performance.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a new method of improving performance of group-III nitride devices by limiting the strain-relaxation on crystal substrates. Limiting the strain-relaxation on group-III nitride substrates is achieved through a novel process of patterning the substrate with a specialized film which reduces the pre-existing thread dislocations before growth of the subsequent layers. By reducing these pre-existing thread dislocations, less misfit dislocation will result during layer growth and will allow for the growth of thicker/higher in composition layers of III-nitride alloy epilayers.

ADVANTAGES

▶ Reduced strain on device layers
▶ Reduced thread and misfit dislocations
▶ High thickness/composition group-III nitride stacking

CONTACT

University of California, Santa Barbara Office of Technology & Industry Alliances
padilla@tia.ucsb.edu
tel: 805-893-2073.

INVENTORS

▶ DenBaars, Steven P.
▶ Nakamura, Shuji
▶ Speck, James S.
▶ Tyagi, Anurag

OTHER INFORMATION

KEYWORDS

indSSL, indLED, LED, substrate patterning, III-nitride, indfeat, indenergy

CATEGORIZED AS

▶ Energy
▶ Lighting
▶ Semiconductors
▶ Design and Fabrication

RELATED CASES

2010-804-0
Reduced complications of lattice mismatch
Improved device performance

APPLICATIONS

UV and Green Region LEDs and LDs
Group-III Nitride Materials
Optoelectronics and Electronic Devices

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,853,669</td>
<td>10/07/2014</td>
<td>2010-804</td>
</tr>
</tbody>
</table>

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- III-Nitride-Based Vertical Cavity Surface Emitting Laser (VCSEL) with a Dielectric P-Side Lens
- Aluminum-cladding-free Nonpolar III-Nitride LEDs and LDs
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- Method for Enhancing Growth of Semipolar Nitride Devices
- Ultraviolet Laser Diode on Nano-Porous AlGaN template
- Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Oxyfluoride Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- Group III-N Light Emitting Devices Enhanced By Stress From Post-Growth Deposited Films
- Thermally Stable, Laser-Driven White Lighting Device
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
Methods for Fabricating III-Nitride Tunnel Junction Devices
Low-Droop LED Structure on GaN Semi-polar Substrates
Contact Architectures for Tunnel Junction Devices
Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
Semi-polar-Based Yellow, Green, Blue LEDs with Improved Performance
III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
Growth of Semipolar III-V Nitride Films with Lower Defect Density
III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
Tunable White Light Based on Polarization-Sensitive LEDs
Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
Growth of High-Performance M-plane GaN Optical Devices
Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
Improved Anisotropic Strain Control in Semipolar Nitride Devices
Novel Multilayer Structure for High-Efficiency UV and Far-UV Light-Emitting Devices
III-V Nitride Device Structures on Patterned Substrates
Method for Increasing GaN Substrate Area in Nitride Devices
High-Intensity Solid State White Laser Diode
Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
GaN-Based Thermoelectric Device for Micro-Power Generation
LED Device Structures with Minimized Light Re-Absorption
Growth of Planar Semi-Polar Gallium Nitride
High-Efficiency and High-Power III-Nitride Devices Grown on or Above a Strain Relaxed Template
Nonpolar (Al, B, In, Ga)N Quantum Well Design
UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD