III-V Nitride Device Structures on Patterned Substrates
Tech ID: 23498 / UC Case 2007-773-0

BRIEF DESCRIPTION
Novel device structures for use in LEDs grown on patterned substrates.

BACKGROUND
The usefulness of III-V nitride materials has been well established for fabrication of visible and ultraviolet optoelectronic devices and high-power electronic devices. One important method for increasing the light extraction efficiency in these devices is to use a patterned substrate on which the device is subsequently grown. Using a standard LED structure (normally used with non-patterned substrates) on patterned substrates, however, has exhibited detrimental performance in output power. There is a need for LED device structures that allow for the realization of high output power LEDs grown on patterned substrates.

DESCRIPTION
Researchers at the University of California, Santa Barbara have developed novel device structures for use in LEDs grown on patterned substrates. By incorporating nitride interlayers, these devices minimize the deleterious effect present in the conventional device structures of LEDs deposited on patterned substrates. In doing so, they enhance the output power of LEDs and increase the light extraction efficiency.

ADVANTAGES
▶ Enhanced power output
▶ Increased extraction efficiency

APPLICATIONS
▶ LEDs grown on patterned substrates

CONTACT
University of California, Santa Barbara Office of Technology & Industry Alliances
padilla@tia.ucsb.edu
tel: 805-893-2073.

INVENTORS
▶ DenBaars, Steven P.
▶ Hwang, Eujin
▶ Iza, Michael
▶ Nakamura, Shuji
▶ Sato, Hitoshi

OTHER INFORMATION
KEYWORDS
LED, patterned substrate,
indssl, indled, cenIEE

CATEGORIZED AS
▶ Engineering
▶ Energy
▶ Lighting
▶ Other
▶ Semiconductors
▶ Design and Fabrication

RELATED CASES
2007-773-0
ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- III-Nitride-Based Vertical Cavity Surface Emitting Laser (VCSEL) with a Dielectric P-Side Lens
- Aluminum-cladding-free Nonpolar III-Nitride LEDs and LDs
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- Method for Enhancing Growth of Semipolar Nitride Devices
- Ultraviolet Laser Diode on Nano-Porous AlGaN template
- Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Oxyfluoride Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- Group III-N Light Emitting Devices Enhanced By Stress From Post-Growth Deposited Films
- Thermally Stable, Laser-Driven White Lighting Device
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Tunable White Light Based on Polarization-Sensitive LEDs
Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN

Growth of High-Performance M-plane GaN Optical Devices

Packaging Technique for the Fabrication of Polarized Light Emitting Diodes

Improved Anisotropic Strain Control in Semipolar Nitride Devices

Novel Multilayer Structure for High-Efficiency UV and Far-UV Light-Emitting Devices

Method for Increasing GaN Substrate Area in Nitride Devices

High-Intensity Solid State White Laser Diode

Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact

Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy

GaN-Based Thermoelectric Device for Micro-Power Generation

Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning

LED Device Structures with Minimized Light Re-Absorption

Growth of Planar Semi-Polar Gallium Nitride

High-Efficiency and High-Power III-Nitride Devices Grown on or Above a Strain Relaxed Template

Nonpolar (Al, B, In, Ga)N Quantum Well Design

UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys

Defect Reduction of Non-Polar and Semi-Polar III-Nitrides

III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture

Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD