MICRO ELECTROMECHANICAL SWITCH DESIGN WITH SELF ALIGNING AND SUB-LITHOGRAPHIC PROPERTIES

BRIEF DESCRIPTION

Shrinking of integrated circuit (IC) device dimensions provides for enhanced functionality and performance of computers and electronics. Researchers at Berkeley are exploring nano-mechanical information processing as a means to overcome the energy-efficiency limits of CMOS technology and recently have directed their efforts toward the development of device designs suitable for implementation in the cross-point array architecture for minimal footprint.

To that end, our researchers have designed a novel process for fabricating ultimately scaled electro-mechanical relays with decananometer lateral dimensions. Their innovation includes a compact electro-mechanical switch design which has self-aligned features with a minimum dimension not defined lithographically. By incorporating multiple sets of output electrodes, the area required to implement a complex logic gate is reduced by a factor of 2.

SUGGESTED USES

» Ultra low power and low cost ICs
» Suggested applications include battery-life dependent electronics and displays, safety-critical devices (e.g. medical devices), nanotechnology, power management and energy harvesting applications

ADVANTAGES

» Design structure possesses property desirable to overcome hysteresis limitation of contacting mechanical switches
» Air-gap based mechanical switches have zero sub-threshold leakage current, rendering trade-off between decreasing active energy and increasing leakage energy non-existent
» Allows logic gate implementation with smaller footprints than equivalent CMOS implementation

RELATED MATERIALS


CONTACT

Curt A. Theisen (Deceased)
curt@berkeley.edu
tel: 510-643-7214.

INVENTORS

» King Liu, Tsu Jae K.

OTHER INFORMATION

KEYWORDS
integrated circuit, electronics, computer, nanotechnology, CMOS, EDA, design

CATEGORIZED AS

» Engineering
» Engineering
» Semiconductors
» Design and Fabrication

RELATED CASES
2013-082-0