Small Dimension High-Efficiency High-Speed Vertical-Cavity Surface-Emitting Lasers
Tech ID: 22050 / UC Case 2008-464-0

BRIEF DESCRIPTION
A very efficient Vertical-Cavity Surface-Emitting Laser (VCSEL) applicable to optoelectronics, specifically optical interconnects.

BACKGROUND
Oxide apertures within the Vertical-Cavity Surface-Emitting Laser (VCSEL) have been used to minimize power dissipation by constricting current within the lasing modes and guiding laser modes (thereby increasing overlap between carriers and optical modes and reducing sidewall losses). However, these apertures have produced undesirable optical scattering due to their imperfect shape and a larger mode diameter is needed for low optical loss.

DESCRIPTION
Researchers at UC Santa Barbara have designed a Vertical-Cavity Surface-Emitting Laser (VCSEL) applicable to optoelectronics, specifically optical interconnects. The invention uses a thicker oxide aperture with a tapered tip designed to reduce the mode volume with minimal added loss. The parasitics are further reduced by using deep oxidation layers. With these novel features, small-dimension high-efficiency high-speed VCSELs can be achieved.

ADVANTAGES
► Low power dissipation due to:
► Small dimension of <5 μm in diameter
► Reduced parasitic capacitance
► Reduced optical scattering loss
► High bandwidth of at least 15 GHz makes for at least 30 Gbit/s operation
► Improved performance
► High-efficiency and high-speed

APPLICATIONS
► High-speed sensing; High-speed communication
► Optical Interconnects in data centers and computers

CONTACT
University of California, Santa Barbara Office of Technology & Industry Alliances
padilla@tia.ucsb.edu
tel: 805-893-2073.

INVENTORS
► Chang, Yu-Chia
► Coldren, Larry A.

OTHER INFORMATION
KEYWORDS
vcSEL, indVCSEL, centEE,
indaltenergy

CATEGORIZED AS
► Optics and Photonics
► All Optics and Photonics
► Engineering
► Engineering

RELATED CASES
2008-464-0
United States Of America | Issued Patent | 7,916,768 | 03/29/2011 | 2008-464

RELATED MATERIALS

- Efficient, High-Data-Rate, Tapered Oxide-Aperture Vertical-Cavity Surface-Emitting Lasers - 06/05/2009