

[Request Information](#)[Permalink](#)

Selective Electrochemical Capture and Release of Lithium from Seawater

Tech ID: 34599 / UC Case 2022-982-0

CONTACT

Donna M. Cyr
cyr@tia.ucsb.edu
tel: .

INVENTORS

- ▶ Heinrich, Shannon
- ▶ Menard, Gabriel
- ▶ Sepunaru, Lior
- ▶ Wang, Zongheng

OTHER INFORMATION

KEYWORDS

Lithium, Li-ion, Batteries, Li-ion batteries, Li, Li extraction, Li capture, Energy, Energy storage, Lithium capture, Lithium extraction, Seawater

CATEGORIZED AS

- ▶ [Energy](#)
- ▶ [Storage/Battery](#)

RELATED CASES

2022-982-0

BACKGROUND

Lithium (Li) is a valuable element that is experiencing skyrocketing demand due to the growth of Li-ion batteries for energy storage applications. Current Li extraction relies on the lime-soda solar evaporation technique from Li-rich brines. However, this process is very slow, requiring 1-2 years, and current techniques are not expected to keep up with projected market demands. Seawater, which contains vast quantities of dissolved Li⁺, represents an underutilized source. It is estimated that seawater contains about 10,000 more dissolved Li than all terrestrial and freshwater reserves. While many sorbent-based membrane technologies are being explored for the selective capture of Li⁺ from seawater or from salty brine well waters, these methods typically rely on further treatment of the membranes with strong acids to remove the extracted Li⁺. There is a need for techniques that extract Li⁺ from seawater without requiring expensive membranes or acidic workups and that do not have the related environmental impacts.

DESCRIPTION

Researchers at the University of California, Santa Barbara have formulated a novel electrochemical process for extracting Li⁺ from seawater. This new method utilizes redox-switchable lithium-selective macrocyclic donors (i.e. carboranes or Cb) to selectively capture and release Li⁺ from seawater under flow conditions. This technique anchors chelating Cb compounds directly to electrode surfaces, enabling lithium capture from seawater flowing across the electrode. The Li⁺ is subsequently released from the electrode via application of a low electric current to generate a concentrated Li⁺ solution. This technique offers cost savings by avoiding membranes and acidic treatments and minimizes environmental impacts by eliminating reagent waste, providing an innovative solution for the growing lithium demand.

Additional information: <https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.202502902>

ADVANTAGES

- ▶ Efficient lithium capture from seawater requiring only a small electric current
- ▶ Avoids costly membranes and acid-based workups
- ▶ Minimizes chemical waste and environmental footprint

APPLICATIONS

- ▶ Lithium capture and extraction for battery manufacturing and energy storage markets
- ▶ Sustainable resource development

PATENT STATUS

Country	Type	Number	Dated	Case
United States Of America	Published Application	20250277321	09/04/2025	2022-982

