

[Request Information](#)[Permalink](#)

Light-Processed Hydrogel Systems For Delivering Spatial Patterning Cues To Tissue Engineered Systems

Tech ID: 34537 / UC Case 2026-646-0

BRIEF DESCRIPTION

A novel 3D bioprintable hydrogel platform enables precise spatial delivery of biochemical gradients to engineer in vitro tissue models with area-specific identities.

FULL DESCRIPTION

This technology introduces hydrogels designed to mimic natural biochemical gradients in 3D in vitro tissue models. Using multi-material, micro-architected hydrogels with tunable stiffness and polymer network density, it enables controlled diffusion of morphogens to induce spatially heterogeneous development, such as cortical arealization in brain organoids. With optimized light projection techniques during 3D printing, this approach facilitates reproducible and scalable fabrication of spatially organized bioscaffolds that better replicate native tissue microenvironments.

SUGGESTED USES

- » Organoid development with spatial heterogeneity for neuroscience and developmental biology research.
- » In vitro disease modeling and drug screening platforms requiring physiologically relevant tissue architecture.
- » Regenerative medicine platforms focusing on tissue patterning and morphogenesis.
- » High-throughput tissue engineering studies leveraging light-based bioprinting.
- » Customized bioscaffold production for precision cell culture and spatially controlled tissue differentiation.

ADVANTAGES

- » Enables controlled, tunable diffusion gradients of growth factors in 3D tissue models.
- » Compatible with high-resolution digital light processing (DLP) 3D bioprinting for scalable fabrication.
- » Utilizes multi-material hydrogels with variable stiffness to direct morphogen transport.
- » Supports development of organoids and tissues with spatially distinct cellular identities.
- » Facilitates more physiologically relevant in vitro models for developmental biology and disease study.
- » Avoids complexity and reproducibility issues of microfluidic gradient systems.

CONTACT

Ben Chu
ben.chu@uci.edu
tel: .

OTHER INFORMATION

CATEGORIZED AS

- » [Biotechnology](#)
- » [Other](#)
- » [Materials & Chemicals](#)
 - » [Biological](#)
 - » [Chemicals](#)
 - » [Polymers](#)
- » [Medical](#)
 - » [Disease: Central Nervous System](#)
 - » [Research Tools](#)
 - » [Stem Cell](#)
- » [Research Tools](#)
 - » [Other](#)

RELATED CASES

UCI Beall
Applied Innovation

5270 California Avenue / Irvine, CA
92697-7700 / Tel: 949.824.2683

© 2026, The Regents of the University of

California

Terms of use

Privacy Notice