

Request Information

Sealed Nanoreactors for X-Ray Dose Detection

Tech ID: 34419 / UC Case 2019-095-0

ABSTRACT

Researchers at the University of California, Davis have developed a nanoreactor that allows for accurate measurements of radiation dose even in the vicinity of other chemicals.

FULL DESCRIPTION

There are currently no techniques for measuring X-ray doses or dose enhancement factors reliably in the presence of nanoparticles. All current methods are unable to isolate the measurements from nanoparticle catalysts or radical scavengers, which makes it difficult to measure the actual X-ray dose. Additionally, no techniques have been developed that allow for the use of nanoreactors in X-ray dose detection.

Researchers at the University of California, Davis have developed a nanoreactor that allows for accurate measurements of radiation dose while other chemicals are nearby. The spherical nanoshell of this system consists of mesoporous silica that prevents potentially interfering chemicals on the outside from entering into the nanoreactor. The nanoreactor contains probing molecules that undergo chemical reactions with reactive species when irradiated. As a result, fluorescent molecules are produced that allow the detection and measurement of the X-rays. This technique allows for the probing molecules to be in the vicinity of, but physically separated from, interfering chemicals. Additionally, the shape of the shell can be modified to better line up with a magnetic field or be easier to imbed within a matrix. This nanoshell can also be used to store drugs

APPLICATIONS

- > X-Ray dose detection.
- ▶ Store drugs or other molecules for irradiation.

FEATURES/BENEFITS

- ▶ More accurate than any other dose detection technique.
- ▶ Novel shell material keeps interfering molecules away from probing molecules.
- ▶ Reaction with probing molecules produces fluorescent molecules for easier detection.
- ▶ Adjustable shape of shell allows for customization based on need.

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	2021038218	12/09/2021	2019-095

CONTACT

Michael M. Mueller mmmueller@ucdavis.edu tel: .

OTHER INFORMATION

KEYWORDS

X-Ray detection,

nanoreactor, nanoshell

CATEGORIZED AS

- **▶** Biotechnology
 - ► Health
- ► Materials &

Chemicals

- ▶ Nanomaterials
- Medical
 - Diagnostics
 - Imaging
- **▶** Nanotechnology
 - Materials
 - ▶ NanoBio

RELATED CASES

2019-095-0

University of California, Davis

Technology Transfer Office

1 Shields Avenue, Mrak Hall 4th Floor,

Davis, CA 95616

Tel:

© 2025, The Regents of the University of California

530.754.8649

Terms of use

techtransfer@ucdavis.edu

Privacy Notice

https://research.ucdavis.edu/technology-

transfer/

Fax:

530.754.7620