

Vaccines Using Macrophage Suppression

Tech ID: 34387 / UC Case 2024-592-0

ABSTRACT

Researchers at the University of California, Davis have developed a technology that introduces vaccines that express macrophage-suppressing molecules to significantly enhance inflammatory T-cell functions for improved immune responses.

FULL DESCRIPTION

The vaccines utilize macrophage-suppressing molecules and novel IL-10 variants and fusion proteins to promote the development of a substantial quantity of antigen- or cancer-specific T cells. These T cells are capable of secreting inflammatory cytokines and responding to MHC class-Ib-restricted "supertopes," leading to improved vaccine efficacy with reduced toxicity.

APPLICATIONS

- ▶ Development of effective vaccines for infectious diseases and cancer.
- ► Customizable platforms for vaccine development across various diseases with enhanced T-cell mediated immunity.
- ▶ Therapeutic interventions for diseases requiring targeted T-cell responses without the adverse effects of generalized immune activation.

FEATURES/BENEFITS

- ▶ Reduces vaccine-associated toxicity while enhancing immune response.
- ► Generates a larger quantity of antigen- or cancer-specific T cells secreting inflammatory cytokines.
- ► Facilitates the development of T cells capable of IFN-gamma secretion, targeting MHC class-Ib molecules such as HLA-E.
- ▶ Adaptable to multiple vaccine vector platforms, increasing versatility.
- ▶ Reduces non-specific inflammatory effects and toxicity commonly associated with T-cell activation in vaccines.
- ▶ Overcomes the limitations of current methods that fail to reliably expand T cells responding to "supertopes" and restricted by MHC class-Ib molecules.
- ▶ Addresses the challenge of off-target effects and complexity in cytomegalovirus-vectored vaccines.

PATENT STATUS

Patent Pending

CONTACT

Amir J. Kallas ajkallas@ucdavis.edu tel: .

INVENTORS

► Hartigan-O'Connor,
Dennis

OTHER INFORMATION

KEYWORDS

administration,
autoimmune disease,
allergic reaction,
cytokine, fusion protein,
immune cell stimulation,
immunosilent,
inflammatory disease,
interleukin-10, HIV,
hepatitis, myeloid cells,
vaccine, viral vector

CATEGORIZED AS

- **▶** Biotechnology
 - ▶ Health
- Medical
 - Delivery Systems
 - ▶ Disease:

Autoimmune and

Inflammation

Disease:

Infectious Diseases

▶ Therapeutics

RELATED CASES

2024-592-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

► Affinity Targeted Immunogens

University of California, Davis

Technology Transfer Office

1 Shields Avenue, Mrak Hall 4th Floor,

Davis, CA 95616

Tel:

© 2025, The Regents of the University of California

530.754.8649

Terms of use

techtransfer@ucdavis.edu

Privacy Notice

https://research.ucdavis.edu/technology-

transfer/

Fax:

530.754.7620