

INNOVATION VENTURES

AVAILABLE TECHNOLOGIES

CONTACT US

Request Information

Permalink

Lung-Targeted Cell-Based Therapies for Inflammatory Disease and Cancer

Tech ID: 34383 / UC Case 2024-179-0

TECHNOLOGY DESCRIPTION

Introducing a groundbreaking lung-targeted SynNotch T-cell platform, engineered to revolutionize the treatment of lung diseases and lung cancer. This cutting-edge technology leverages synthetic biology to program immune cells for precision activation exclusively within lung tissues. By targeting a lung-specific receptor, SynNotch T cells deliver therapeutic payloads, including CARs, cytokines, and anti-fibrotic genes, with unparalleled specificity to the lung environment, minimizing systemic toxicity and maximizing localized efficacy. Compatible with systemic administration, this modular, payload-agnostic platform supports diverse therapeutic applications and integrates seamlessly into existing cell therapy pipelines.

Competitive Advantages

- ▶ Lung-Specific Activation: SynNotch T cells ensure localized therapeutic effects and reduce off-target toxicity.
- ▶ Modular Platform: Adaptable to multiple lung disease indications, including non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), idiopathic pulmonary fibrosis (IPF), acute lung injury and autoimmune lung disorders.
- ▶ **Broad Payload Compatibility:** Supports diverse therapeutic approaches, including CAR T-cell therapies, cytokine, growth factor or anti-fibrotic delivery.
- ▶ **Safety Profile:** Preclinical studies confirm the absence of systemic inflammation or off-tissue toxicity while demonstrating sustained therapeutic activity within the lung.
- ➤ **Scalability:** Integrates seamlessly with existing CAR-T manufacturing workflows and systemic administration methods, optimizing production efficiency.
- ▶ Unmet Need Addressed: Positioned to address significant gaps in treatment of pulmonary fibrosis, acture lung injury, auto-immune lung disorders, lung cancer and isolated pulmonary metastases by minimizing systemic toxicity and resistance.

STAGE OF DEVELOPMENT

The lung-targeted SynNotch T-cell platform has undergone rigorous preclinical validation, including:

▶ **Tissue Specificity:** Demonstrated selective activation through co-culture studies.

CONTACT

Gemma E. Rooney

Gemma.Rooney@ucsf.edu tel: 415-625-9093.

OTHER INFORMATION

KEYWORDS

SynNotch, Inflammatory

Disease, Cancer, Non-Small

Cell Lung Cancer, Small Cell

Lung Cancer, Idiopathic

Pulmonary Fibrosis,

Autoimmune Lung Disorders

CATEGORIZED AS

Medical

Disease: Cancer

▶ Disease: Respiratory

and Pulmonary System

Therapeutics

RELATED CASES

2024-179-0

- ▶ In Vivo Selectivity: Proven therapeutic activity confined to lung tissue in dual-tumor xenograft models, preventing off-target effects.
- ➤ Safety and Persistence: Confirmed localized immune activation without systemic cytokine release or toxicity in preclinical models.
- ▶ Scalable Proof-of-Concept: Preclinical models validate the platform's adaptability across oncology and inflammatory disease applications.

RELATED MATERIALS

PATENT STATUS

Patent Pending