

Request Information

# Nanoplatform for Cancer Therapy

Tech ID: 34360 / UC Case 2018-802-0

#### **ABSTRACT**

Researchers at the University of California, Davis have developed a nanoparticle system combining photothermal therapy and chemotherapy for enhanced cancer treatment.

#### **FULL DESCRIPTION**

Amphiphilic hybrid telodendrimers comprised of PEG, cholic acid and indocyanine green derivative (PCI) can self-assemble to form stable micelles, with excellent photothermal properties as well as high loading of cytotoxic agents and immunomodulatory agents. Introduction of a related cysteine containing telodendrimer allows co-assembly with PCI to form a biocompatible and stable disulfide-crosslinked PCI nanoparticle (CPCI-NPs). CPCI-NPs possess fast heating capability and superior photothermal conversion efficiency, when compared to small-molecule photothermal agents or gold nanorods. Combination photothermal-/chemotherapy with doxorubicin-loaded CPCI-NPs resulted in highly synergistic anti-tumor response in orthotropic OSC-3 oral cancer xenograft model. Similarly, CPCI loaded with imiquimod, an immunostimulant, was found to be highly effective in 4T1 syngeneic murine breast cancer model, particularly when photothermal-/immuno-therapy was given in combination with PD-1 checkpoint blockade antibody. Such triple therapy not only eradicated the light-irradiated primary tumors, but also dramatically inhibited the light-untreated distant tumors via activating the innate and adaptive immune systems in the tumor microenvironment. This versatile photothermal nanoplatform has great potential for clinical translation.

# **APPLICATIONS**

- ► Cancer therapy, specifically for treating tumors accessible to light irradiation and potentially for systemic treatment when combined with immunotherapy.
- ▶ Photothermal ablation of localized tumors.
- ► Controlled drug delivery systems for chemotherapeutic agents.
- ▶ Diagnostic imaging through near-infrared fluorescence capabilities.

### FEATURES/BENEFITS

- ▶ High photothermal conversion efficiency for effective tumor ablation.
- ▶ Stable and controlled drug release mechanism, enhancing chemotherapy efficacy.
- ▶ Excellent biocompatibility and low systemic toxicity.
- ▶ Enhanced tumor targeting and penetration, maximizing therapeutic outcomes.
- ▶ Ability to combine photothermal therapy and chemotherapy, offering a synergistic therapeutic effect.
- Overcomes limitations of poor drug solubility and systemic toxicity in chemotherapy.
- Addresses the challenge of achieving targeted and controlled delivery of therapeutic agents to tumor sites.

#### **CONTACT**

Raj Gururajan rgururajan@ucdavis.edu tel: 530-754-7637.



# **INVENTORS**

- ▶ Lam, Kit S.
- ► Zhang, Lu

# OTHER INFORMATION

# **KEYWORDS**

biocompatibility, cancer
therapy, immunotherapy,
nanoparticle, nearinfrared, photothermal
conversion, photothermal
therapy (PTT),
polyethylene glycol
(PEG), synergistic
effects, target selectivity

#### **CATEGORIZED AS**

Optics and

#### **Photonics**

All Optics andPhotonics

- Biotechnology
  - Health
  - ▶ Other

▶ Solves the issue of rapid clearance and low photothermal conversion efficiency seen in other photothermal agents.

#### **PATENT STATUS**

| Country                  | Туре                  | Number      | Dated      | Case     |
|--------------------------|-----------------------|-------------|------------|----------|
| United States Of America | Published Application | 20210346518 | 11/11/2021 | 2018-802 |

- ▶ Proteomics
- **▶** Imaging
  - Medical
  - ▶ Molecular
- ► Materials &

#### **Chemicals**

- ▶ Nanomaterials
- ▶ Polymers
- **▶** Medical
  - ▶ Delivery Systems
  - ▶ Disease: Cancer
  - ▶ Imaging
  - ▶ Research Tools
  - ► Therapeutics
- ▶ Nanotechnology
  - NanoBio
- ► Sensors &

#### **Instrumentation**

Medical

#### **RELATED CASES**

2018-802-0

# ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Novel Solid Tumor Chemodrug LLS2
- ▶ Nuclear Magnetic Resonance System for Determining Oil and Water Compositions in Drilling Mud
- ▶ Affinity Peptides for Diagnosis and Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 and Zika Virus Infections
- ▶ Nanoparticles for Drug Delivery, Tissue Targeting and Imaging Analysis
- ► Conjugates That Combine HDAC Inhibitors and Retinoids into Disease Preventatives/Treatments
- ► Artificial Intelligence-Based Evaluation Of Drug Efficacy
- ▶ A Novel RGD-Containing Cyclic Peptide for use in Cancer Imaging and as a Targeted-Therapy Ligand
- ► Site-Specific Ligation and Compound Conjugation to Existing Antibodies
- ► Ligands for Alpha-4-Beta-1 Integrin
- ► Functional Illumination in Living Cells
- ▶ Site-specific Chemical Ligation of Native Human Serum Albumin as a Carrier for Drugs
- ► Multifunctional Porphyrin-Based Nanomedicine Platform
- ▶ Transformable Smart Peptides as Cancer Therapeutics
- ▶ Engineered Biomaterial to Prevent Endothelial Inflammation
- ▶ PVA Nanocarrier System for Controlled Drug Delivery
- ▶ Systems and Methods of Single-Cell Segmentation and Spatial Multiomics Analyses

1 Shields Avenue, Mrak Hall 4th Floor, Davis,CA 95616 techtransfer@ucdavis.edu

https://research.ucdavis.edu/technology-

transfer/

Fax:

530.754.7620

Privacy Notice