UCI Beall Applied Innovation

Research Translation Group

Research Translation Group

Available Technologies

Contact Us

Request Information

Permalink

A Method For Safely Scheduling Computing Task Offloads For Autonomous Vehicles

Tech ID: 34217 / UC Case 2023-779-0

BRIEF DESCRIPTION

EnergyShield is a pioneering framework designed to optimize energy consumption through safe, intelligent offloading of deep neural network computations for autonomous vehicles.

FULL DESCRIPTION

EnergyShield introduces a groundbreaking approach to manage the computational demands of neural network controllers in autonomous vehicles. By offloading tasks to edge computing resources in a provably safe manner, it ensures that the vehicle's safety and performance are not compromised. This is achieved through a novel safety monitor that acts as a "shield," allowing for energy-efficient computations without sacrificing the reliability required by mission-critical systems.

SUGGESTED USES

- >> Autonomous driving systems requiring real-time, safe, and energy-efficient computation.
- >> Embedded systems in autonomous vehicles, unmanned aerial vehicles (UAVs), drones, and robotics with limited computational resources.
- >> Edge computing platforms seeking to support mission-critical applications with stringent safety requirements.

ADVANTAGES

- >> Ensures formal safety properties of autonomous systems while enabling low-power offloading optimizations.
- » Designed with a comprehensive perspective, making it adaptable and effective.
- » Introduces a novel use of safety filters as runtime monitors to guide offloading decisions.
- >> Achieves energy efficiency gains without compromising on safety guarantees.
- >> Offers a scalable and generic methodology applicable across various controllers, safety functions, and autonomous systems.

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	20240367678	11/07/2024	2023-779

CONTACT

Edward Hsieh hsiehe5@uci.edu tel: 949-824-8428.

OTHER INFORMATION

CATEGORIZED AS

- » Computer
 - » Software
- » Sensors & Instrumentation
 - » Position sensors
- >> Transportation
 - » Automotive
- » Engineering
 - » Other

RELATED CASES

2023-779-0

UCI Beall Applied Innovation

5270 California Avenue / Irvine,CA 92697-7700 / Tel: 949.824.2683

© 2025, The Regents of the University of California Terms of use Privacy Notice