

[Request Information](#)

[Permalink](#)

ENABLING PARTIAL SOFT-SWITCHING WITHIN REGULATING SWITCHED CAPACITOR CONVERTER

Tech ID: 34184 / UC Case 2025-188-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

High-conversion-ratio power converters used in compact Point-of-Load (PoL) applications, such as data centers or portable electronics, often face the challenge of large size and weight due to the necessary energy-storage components, particularly flying capacitors, while also struggling with switching losses that reduce efficiency. This innovation, developed by UC Berkeley researchers, addresses these issues with a novel regulating hybrid switched-capacitor (HSC) power converter topology referred to as a "Dual Inductor Switching Bus Converter" (DISB converter). The DISB converter combines an initial 2:1 switched-capacitor conversion stage with a Symmetric Dual-Inductor Hybrid (SDIH) conversion stage, capitalizing on the benefits of both. The initial 2:1 voltage reduction significantly reduces the overall volume and weight of the flying capacitors, while the SDIH stage contributes a reduced component count and an excellent switch stress figure of merit. Crucially, a proposed auxiliary circuit block enables near-zero-voltage conditions (partial soft-switching) within the initial 2:1 stage, which significantly improves the converter's overall efficiency.

SUGGESTED USES

»

High conversion ratio Point-of-Load (PoL) power conversion in space-constrained applications.

»

Power supply solutions for data centers and server racks where size and weight are critical.

»

Integration into portable electronics and other weight-sensitive devices.

»

Replacing traditional power converters to achieve higher power density and efficiency.

ADVANTAGES

»

Reduced Volume/Weight of flying capacitors due to the initial 2:1 voltage reduction stage.

»

Significantly Improved Efficiency through an auxiliary circuit block that enables near-zero-voltage (partial soft-switching) in the 2:1 stage.

»

Reduced Component Count offered by the Symmetric Dual-Inductor Hybrid (SDIH) conversion stage.

»

Excellent Switch Stress Figure of Merit provided by the SDIH stage.

»

Suitable for high conversion ratio applications.

CONTACT

Michael Cohen
mcohen@berkeley.edu
tel: 510-643-4218.

INVENTORS

» Pilawa-Podgurski, Robert C.N.

OTHER INFORMATION

CATEGORIZED AS

» [Energy](#)

» [Other](#)

» [Storage/Battery](#)

» [Transmission](#)

» [Engineering](#)

» [Engineering](#)

» [Other](#)

» [Nanotechnology](#)

» [Electronics](#)

RELATED CASES

2025-188-0

RELATED MATERIALS

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ [Current-Programmed Modulation of Flying Capacitor Multilevel Converters](#)
- ▶ [Multi-Phase Hybrid Power Converter Architecture With Large Conversion Ratios](#)
- ▶ [Active Tuning Of Resonant Switched-Capacitor Converters For Soft Switching Opera](#)
- ▶ [Thermal Test Vehicle For Electronics Cooling Solutions](#)

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley, CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

<https://ipira.berkeley.edu/> | otl-feedback@lists.berkeley.edu

© 2025, The Regents of the University of California

[Terms of use](#) | [Privacy Notice](#)