

A High Degree of Freedom, Lightweight, Multi-Finger Robotic End-Effector

Tech ID: 34167 / UC Case 2025-515-0

ABSTRACT

Researchers at the University of California, Davis have developed a technology that introduces a highly adaptable, lightweight robotic end effector designed for complex manipulation tasks in automation.

FULL DESCRIPTION

The technology encompasses a robotic end effector apparatus equipped with a palm assembly featuring five fingers, each with multiple independently controlled phalangeal joint assemblies. These assemblies are driven by linear actuators actuated by motors positioned within the phalangeal cavities, offering a high degree of dexterity and adaptability for various tasks. Additionally, the end effector includes a wrist assembly that enhances its flexibility and application range, making it suitable for intricate assembly tasks that require human-like dexterity.

APPLICATIONS

- Automated assembly lines requiring dexterous manipulation.
- Custom product manufacturing with high variability in tasks.
- ▶ Research and development in robotics and automation technologies.

▶ Industries requiring high precision and adaptability, such as electronics and automotive manufacturing.

FEATURES/BENEFITS

Provides a high degree of freedom with multiple independently controlled phalangeal joints.

- ▶ Lightweight design is compatible with a wide range of robotic arms.
- ▶ Effectively handles tasks designed for human workers with anthropomorphic features.
- Self-locking capability for enhanced precision and stability in manipulation.
- ▶ Integrated wrist assembly for increased flexibility and range of motion.
- ▶ Reduces technical complexity and limited adaptability in assembly automation.
- Overcomes limitations of current robotic grippers in performing complex manipulation tasks.

Addresses economic and practical constraints in adapting automation for small batches or custom products.

PATENT STATUS

CONTACT

Andrew M. Van Court amvancourt@ucdavis.edu tel: .

INVENTORS

- Basheer, Al Arsh
- Soltani Bozchalooi,
 Iman

OTHER INFORMATION

KEYWORDS actuator assembly, automation, dexterity, end effector, linear actuator, motor, phalangeal joint assemblies, robotic arm, robotic gripper, robotics

CATEGORIZED AS

Engineering

- Engineering
- Other
- Robotics and
- Automation

RELATED CASES 2025-515-0

RELATED MATERIALS

Basheer, Al & Chang, Justin & Chen, Yuyang & Kim, David & Soltani, Iman. (2025).
 Krysalis Hand: A Lightweight, High-Payload, 18-DoF Anthropomorphic End-Effector for
 Robotic Learning and Dexterous Manipulation. 10.48550/arXiv.2504.12967. - 04/17/2025

University of California, Davis	Tel:	\odot 2025, The Regents of the University of California	
Technology Transfer Office	530.754.8649		Terms of use
1 Shields Avenue, Mrak Hall 4th Floor,	techtransfer@ucdavis.edu Pr		Privacy Notice
Davis,CA 95616	https://research.ucdavis.edu/technology-		
	<u>transfer/</u>		
	Fax:		
	530.754.7620		