Request Information Permalink

A NEW METHOD FOR CHEMICALLY RECYCLING DICYCLOPENTADIENE THERMOSETS

Tech ID: 34003 / UC Case 2025-119-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

The invention addresses the problem of recycling high-performance thermosets by developing a chemical process to deconstruct cycloolefin resins (CORs) that contain dicyclopentadiene (DCPD) crosslinkers. This process, developed by UC Berkeley researchers, uses a second-generation Hoveyda—Grubbs ruthenium(II) alkylidene catalyst for deconstruction via ring-closing metathesis. The method selectively reforms the cyclopentene ring in DCPD, allowing the resulting linear polyDCPD chains to be reused in new manufacturing cycles. This enables resin-to-resin circularity, with up to 84% of the linear DCPD being retrievable from end-of-life thermosets. The properties of the recycled material are comparable to the original, and the process works on various commercial and model CORs.

SUGGESTED USES

>>>

Creating a circular economy for high-performance thermosets.

>>

Recycling of single-use products made from CORs.

>>

Manufacturing new products from recycled DCPD materials.

>>

Reducing waste and environmental impact from thermoset production.

ADVANTAGES

>>

Enables resin-to-resin circularity for DCPD thermosets, which are typically difficult to recycle.

>>

Achieves a high material recovery rate, with up to 84% of linear DCPD being retrievable.

>>

Reproduces the properties of the original thermoset in subsequent generations of recycled material.

>>

Provides a method for deconstructing various CORs, including copolymers.

RELATED MATERIALS

CONTACT

Michael Cohen mcohen@berkeley.edu tel: 510-643-4218.

INVENTORS

» Taylor, Hayden K.

OTHER INFORMATION

CATEGORIZED AS

- » Biotechnology
 - >> Industrial/ Energy
- » Materials & Chemicals
 - » Other
 - » Polymers
- » Nanotechnology
 - » Other
- » Research Tools
 - >> Other

RELATED CASES

2025-119-0

- ▶ Computed Axial Lithography (CAL) For 3D Additive Manufacturing
- ▶ Roll-To-Roll Based 3D Printing Through Computed Axial Lithography
- ► High Fidelity 3D Printing Through Computed Axial Lithography
- ▶ System And Method For Tomographic Fluorescence Imaging For Material Monitoring

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu

© 2025, The Regents of the University of California

Terms of use | Privacy Notice