

[Request Information](#)

[Permalink](#)

IN-CONTEXT LEARNING ENABLES ROBOT ACTION PREDICTION IN LLMS

Tech ID: 33985 / UC Case 2025-112-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

Bridging the gap between linguistic reasoning and physical execution, UC Berkeley researchers have developed a method to enable robotic devices to predict complex actions using in-context learning (ICL). By leveraging the inherent reasoning capabilities of Large Language Models (LLMs), this approach allows a robot to translate natural language instructions into sequential motor actions without the need for task-specific fine-tuning or intensive retraining. The system allows the robot to generalize to new, unseen tasks on the fly. This breakthrough shifts robot programming away from rigid coding toward a more flexible, intuitive interaction where the machine "understands" the intended goal by drawing parallels from the provided examples.

SUGGESTED USES

»

Collaborative Industrial Robots (Cobots): Deploying warehouse robots that can switch between packing, sorting, and palletizing roles simply by being shown a few text-based examples of the new task.

»

Assistive Home Robotics: Enabling service robots to perform complex household chores, like setting a table or sorting laundry, based on a user's verbal description and a brief set of demonstration steps. » Other

»

Rapid Prototyping in Manufacturing: Reducing the downtime required to re-program assembly line arms for small-batch production runs. » Engineering

»

Remote Exploration: Powering autonomous rovers in extraterrestrial or deep-sea environments where communication latency makes traditional "step-by-step" remote control impossible. » Robotics and Automation

RELATED CASES

2025-112-0

»

Search and Rescue: Guiding drones or quadrupedal robots through disaster zones where they must adapt to novel obstacles and mission objectives without a pre-loaded map or behavior set.

ADVANTAGES

»

Zero Additional Training: Eliminates the computational cost and time delay associated with fine-tuning models for every specific robotic movement or task.

»

High Adaptability: Allows robots to handle "out-of-distribution" scenarios—tasks they weren't explicitly designed for—by referencing the provided context.

»

Human-Centric Interface: Enables non-experts to "program" robots using natural language and simple demonstrations rather than complex robotics code.

»

Reduced Data Requirements: Unlike traditional imitation learning, which requires thousands of trials, ICL can function effectively with only a handful of examples.

»

Computational Efficiency: By utilizing the pre-existing logic of LLMs, the system leverages massive amounts of pre-trained data to solve physical coordination problems.

RELATED MATERIALS

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ [Pre-Training Auto-Regressive Robotic Models With 4D Representations](#)
- ▶ [Humanoid Locomotion As Next Token Prediction](#)
- ▶ [Llarva: Vision-Action Instruction Tuning Enhances Robot Learning](#)

CONTACT

Laleh Shayesteh
lalehs@berkeley.edu
tel: 510-642-4537.

INVENTORS

» Darrell, Trevor J.

OTHER INFORMATION

CATEGORIZED AS

» [Computer](#)

» [Research Tools](#)

» [Engineering](#)

» [Robotics and Automation](#)

