Request Information Permalink

# CO2 UPGRADING INTO C2 OXYGENATES WITH A CUAG TANDEM ELECTROCATALYST

Tech ID: 33955 / UC Case 2025-099-0

#### PATENT STATUS

Patent Pending

### **BRIEF DESCRIPTION**

The challenge in carbon dioxide utilization is efficiently converting it into valuable, multi-carbon chemicals. Current carbon dioxide electroreduction methods often suffer from low selectivity and yield towards desirable products like two-carbon oxygenates, such as ethanol and acetate, which are key platform molecules for the chemical industry. This innovation, developed by UC Berkeley researchers, addresses this by using a novel Copper-Silver (CuAg) tandem electrocatalyst within a membrane electrode assembly (MEA) cell to efficiently upgrade carbon dioxide into two-carbon oxygenates. This technology offers significantly enhanced selectivity and efficiency for two-carbon oxygenate production directly from carbon dioxide compared to conventional single-metal or mixed-metal catalysts, presenting a more sustainable and economically viable route for chemical synthesis.

## SUGGESTED USES

**>>** 

Sustainable production of commodity chemicals like ethanol and acetate from captured or waste carbon dioxide, reducing reliance on fossil fuels.

**>>** 

Decarbonization of the chemical and fuel industries by providing a pathway for carbon dioxide utilization.

**>>** 

Integration into electrochemical energy storage and conversion systems, using renewable electricity to drive the carbon dioxide reduction reaction.

**>>** 

On-site production of two-carbon oxygenates at industrial carbon dioxide emission sources.

# **ADVANTAGES**

**>>** 

High selectivity for two-carbon oxygenates (ethanol and acetate) compared to competing byproducts (e.g., methane or carbon monoxide).

**>>** 

Enhanced efficiency due to the tandem catalytic effect of the Copper-Silver nanoparticles.

**>>** 

Scalable design enabled by the use of a membrane electrode assembly (MEA) cell, suitable for industrial applications.

## CONTACT

Laleh Shayesteh lalehs@berkeley.edu tel: 510-642-4537.



### **INVENTORS**

» Yang, Peidong

## OTHER INFORMATION

#### **CATEGORIZED AS**

- » Energy
  - » Other
- » Materials & Chemicals
  - » Chemicals
  - » Nanomaterials
- » Nanotechnology
  - » Other
  - >> Tools and Devices

**RELATED CASES** 

2025-099-0

**>>>** 

Reduced catalyst loading or improved lifetime due to the nanoscale and stable integration on a hydrophobic carbon substrate.

**>>** 

Sustainable and environmentally friendly process that converts a greenhouse gas (carbon dioxide) into valuable products.

**RELATED MATERIALS** 

# ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Methods to Produce Ultra-Thin Copper Nanowires for Transparent Conductors
- ▶ Semiconductor-Based Photo Redox Catalysts For Sustainable Dehydrogenation Reactions



University of California, Berkeley Office of Technology Licensing
2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu

© 2025, The Regents of the University of California

Terms of use | Privacy Notice